

CONTROL OF AN

UNMANNED AERIAL VEHICLE

RELATIVE TO A WALL

By

Ryan Sass

MECHATRONIC CAPSTONE PROJECT REPORT

Submitted to

the Department of Mechanical Engineering

of

SANTA CLARA UNIVERSITY

in Partial Fulfillment of the Requirements

for the degree of

Master of Science in Mechanical Engineering

Santa Clara, California

2016

Page | ii

Control of an Unnamed Aerial Vehicle Relative to a Wall

Ryan Sass

Department of Mechanical Engineering

Santa Clara University

2016

ABSTRACT

Automated control of UAV aircraft reduces pilot workload and increases capability for payload

operation. However, most commercially available UAV aircraft do not possess automated

control relative to other objects, just absolute position control of the aircraft‟s location. This

ability to maintain relative control would further increase payload usefulness and reduce pilot

workload even further. This paper covers the development and design of an off-the-shelf UAV to

operate autonomously in relation to a stationary wall. This project demonstrates that

simultaneous yaw and pitch control loops can be executed on a microcontroller, installed on the

drone aircraft, to perform wall-standoff control. For more robust automated control,

improvements beyond this project will be necessary to achieve finer control motion and more

sophisticated control. However, this first step in demonstrating automated aircraft control

relative to an object can still provide practical uses for drone payload operation.

Figure 1 - Capstone Project Drone in Flight

Image courtesy of Ryan Cooper, Santa Clara University

Page | iii

Acknowledgements

The development of this project would not have been achieved without the support of the

following people and entities:

 Dr. Christopher Kitts, Santa Clara University – Project advisor, project guidance and overall

project planning.

 Mr. Ryan Cooper, Santa Clara University – Adafruit Micro SD Card Breakout Board

Software Development and Implementation, authoring of sections 3.6.7 and 3.7.

 Jacob Osoke, Andrew Drape, Brayton McKnight, Franz Plum, Santa Clara University – Lidar

Sensor Mount Development and Prototyping.

 Anne Mahacek, Santa Clara University – Maker Lab access, and tool borrowing.

 Killian Poore, Santa Clara University – General guidance and reference for RC peripherals.

 Aero Micro - RC Part Store.

 3D Robotics – X-8 and Pixhawk Troubleshooting and Support.

 Current UAS – Motor Replacements and X-8 Support

 RC Timer – Fast and quality Motor Replacements!

Page | iv

Table of Contents

1. Introduction ... 1

1.1. Unmanned Aerial Vehicles and Drones ... 1

1.2. Flight Computers .. 1

1.3. Drone Uses and Applications ... 2

1.4. Current Shortcomings of Today‟s Drones ... 3

1.5. Capstone Project Description and Purpose .. 4

1.6. Project Performance Objectives ... 5

2. System Overview .. 6

2.1. System Component Description ... 6

2.2. Drone System Overview .. 7

2.3. Sensing System Overview .. 10

2.4. Control System Overview .. 11

2.5. Integration Overview .. 13

3. Detailed Design Description ... 14

3.1. Introduction .. 14

3.2. Sensing System Design .. 14

3.3. Control System Design and Map ... 17

3.4. System Integration .. 21

3.5. Electrical System Wiring and Layout .. 26

3.6. Software Design and Flow ... 32

3.7. Data Collection and Processing .. 36

3.8. Pixhawk Flight Modes, Failsafes, and Parameter Settings .. 36

4. Testing... 39

4.1. Introduction .. 39

4.2. Fall Quarter – Demonstration of Project Feasibility and Limited Operation 39

4.3. Winter Quarter – Demonstration of 2D Operation ... 41

4.4. Spring Quarter – Demonstration of Flight Operation .. 42

4.5. Flight Position and Control Loop Performance Data ... 49

4.6. Overall Test Results ... 51

Page | v

5. Results, Conclusions, and Future Work Suggestions ... 52

5.1. Results of Development ... 52

5.2. Conclusions of Operability... 53

5.3. Suggestions for Future Work and Development .. 53

References ... 56

Appendix ... 57

Project Flight Procedures .. 57

Arduino Software Code .. 60

Page | 1

1. Introduction

1.1. Unmanned Aerial Vehicles and Drones

Unmanned aerial vehicles or UAVs are becoming more and

more prolific. Ranging from mere inches in size and

carrying no payload, to tens of feet across and the ability to

carry weapons and heavy sensors, the usefulness of these

computer-piloted aircraft continues to expand into more and

more applications. The type of UAV varies from aircraft

resembling conventional looking airplanes and helicopters,

to more unique shapes, such as quad-, hex-, and octocopters.

One rapidly expanding UAV market involves quad/hex/octocopter vehicles. These aircraft,

commonly referred to as 'drones', usually vary in size

from a few inches to approximately 2-3 feet across.

They are commonly identified by their four, six, or

eight motors arranged in a somewhat circular pattern.

They are usually electrically powered, although they

can be powered by other means such as gas motors.

These drones have a few unique characteristics that

make them very simple for someone to use. The

airframe is simple to build (or prebuilt), there are no

control surfaces aside from the spinning propellers to

build, mount, or maintain, and when combined with a

simple flight computer mounted to the airframe, these

drones are very stable and simple to fly. While many

drones or remote controlled aircraft are flown using a

hand-held remote controller, many controllers allow

automated navigation via command uplink or preloaded waypoints.

1.2. Flight Computers

Copter-style vehicles are difficult to pilot without the assistance of a flight computer. This is

because small disturbances in aircraft movement lead to large changes in aircraft velocity,

making the vehicle difficult to control. Drones equipped with onboard flight computers will

sense the orientation and acceleration of the aircraft in all three dimensions, as well as the control

the input from a user's remote control. From this basic data, the computer will calculate the

Figure 2 - RQ-4 Global Hawk UAV
 Image courtesy of Author Stacey Knott, Wikipedia, and

The United States Air Force

Figure 3 – UDI Nano Quadcopter sitting on the

capstone project drone

Image courtesy of Ryan Sass, Santa Clara University

Page | 2

proper orientation the aircraft should assume, and, having specified the configuration of the type

of aircraft (usually H, X, or circular hex or octo), it will adjust each of the 4, 6, or 8 motors to

achieve aircraft control under the four degrees of independent control: roll, pitch, yaw, and

thrust. These adjustments occur in response to the user's input as well as to keep the aircraft

stable and compensate for things such as slight differences in motor performance at a given

power setting. This makes tasks such as a copter aircraft hovering incredibly simple.

As the sophistication of these flight computers

increases, the functionality of these drones does as well.

The sensors that these computers use extend from just

accelerometers to measure the aircraft‟s orientation.

More sophisticated computers use compasses for

heading, barometers for altitude, GPS for precise

location, and telemetry for sending parameters to a

ground station. These modern flight computers can

perform many autopilot features, including holding heading/position/altitude, flying at a

specified speed/heading/altitude, automatically taking off and landing, and loitering or circling

over a certain location. They can also combine these functions to fly complete missions, flying

to a sequence of pre-specified GPS coordinates. They can activate payloads automatically as

well, and some have failsafe modes for responding to conditions such as low battery, the loss of

a communication link, or flying outside a pre-defined area. All these automated tasks can be

transmitted to the aircraft via telemetry link before or during flight. Because of this

sophistication, these flight computers can maintain absolute control over the stability and

position of an aircraft.

1.3. Drone Uses and Applications

This absolute control over an aircraft allows drones to support a wide range of automated tasks

including aerial surveillance, aerial surveying, filmmaking, journalism, law enforcement, search

and rescue, scientific research, disaster relief,

archaeology, cargo transport, and agriculture. In

almost all cases, the drone itself operates as the

platform that a payload will operate from to

achieve given tasks.

Common types of payloads include cargo, cameras,

weapons, radar, sensors, and transmitting devices.

These payloads can be as simple as a user-activated

camera, or as complicated as computer-assisted,

visual tracking devices. The payload can be used

for commercial applications, such as shipping of

Figure 4 - APM 2.6 Flight Computer
Image courtesy of 3DR

Figure 5 - md4-1000 drone testing for DHL package

delivery
Image courtesy of Author Frankhöffner and Wikipedia

Page | 3

goods, research applications such as geological surveying, or military applications, such as firing

of weapons.

Operation of the payload and the aircraft sometimes requires either automation or multiple users.

Consider, for instance, a drone equipped with a camera equipped to pan and tilt with user control

being used for surveillance. In order to properly surveil an object of interest, not only must

control of the aircraft be maintained in order to provide the proper location for the camera

payload, but the camera itself must be operated in order to properly record the object itself. If the

aircraft moves, aircraft and camera control must be performed simultaneously in order to

maintain surveillance.

This is where flight computer automation can prove practical and reduce operator workload. For

instance, the operator flying the surveillance of a drone can set the aircraft to maintain or circle

it‟s a location described by GPS coordinates while the operator focuses on operating the payload.

While these flight computers can enable users to autonomously accomplish dirty, dull,

dangerous, or remote tasks, there are some limitations to what these drone computers currently

can accomplish.

1.4. Current Shortcomings of Today’s Drones

One major shortcoming of drones is their lack of automated control relative to other objects. This

relative control is paramount for object recognition and avoidance, as well as a maintaining flight

automation without accurate GPS connection, such as in the event of bad reception or flying

indoors. Most drones are not equipped with visual or proximity sensors to detect objects that

could pose risk of damage to either the aircraft or the imposing object.

Most drones are not equipped

with proximity sensors or flight

computers configured to

recognize objects that pose risk

to drones. At the moment, the

most prudent way for drones to

avoid objects while performing

automated flying missions is to

set flight parameters so that the

drone either flies above the

hazard or flies with enough space

between it and the hazard to

avoid a collision.

While automated flight to avoid flying near objects is good practice to avoid collisions, it does

limit what drones can accomplish. Things such as building inspections, indoor flight, close

Figure 6 - Flight parameters to avoid hazards, such as this building
Image courtesy of Ryan Sass, Santa Clara University

Page | 4

proximity remote photography, and 3D object mapping are limited to manual drone operation

because current available drones are not equipped with object recognition or collision avoidance

capability. Despite this, manual flying of a drone in close proximity to objects is difficult and a

considerable risk. Things such as disturbances, user disorientation, confusion, or distraction can

still result in collision due to user error.

Automating the aircraft to perform relative control – such as keeping a certain distance from an

object, would reduce pilot workload and provide safer drone operation while the user controls

the payload or drone position.

An example where this relative control would

prove useful would be using building

inspections. If the intended need is to

photograph the side of a tall building at a close

enough range for inspection purposes,

manually lifting a person to each location to

take a picture could prove difficult, unsafe,

and impractical. Having a drone hold a steady

distance away from the side of the building,

while a user operates the drone‟s position

vertically as well as laterally in order to

position the payload properly would be much

safer and faster.

1.5. Capstone Project Description and Purpose

The purpose of this project is to exhibit control of yaw orientation and distance of a drone

relative to a wall. To do this, the following

tasks were performed: design of a sensor

package, development of dual control loops in

an Arduino microcontroller, integration of the

sensor package and microcontroller with the

existing drone and its autopilot, and

experimentation and testing of the drone to

prove project capability. The result of the

project is a drone that operates the pitch and

yaw axes of flight control autonomously to

demonstrate basic “plane lock” with a vertical

wall. This “plane lock” can be characterized

as the drone still exhibiting user control in the roll (left / right) and thrust (up / down) axes but

Figure 7 - A drone performing a building inspection
Image courtesy of Building Enclosure Consulting LLC

Figure 8 - The complete automated drone system used for

this capstone project
Image courtesy of Ryan Sass, Santa Clara University

Page | 5

holds orientation and distance along an invisible vertical plane parallel to the wall at a set

distance away. This allows the drone to fly autonomously and follow the wall‟s features, easing

operation of manual flight.

Observing the drone fly when automation is first activated midflight, the drone will align itself

(yawing or turning left and right) and proceed to maintain a pre-programmed normal distance to

a wall (back and forth) with an accuracy of about two feet. The drone will still require user

control of the roll (left and right) and thrust (up and down) axes, as well as user control for

modes of flight such as liftoff, pre-automated flight positioning, and landing.

1.6. Project Performance Objectives

Because this project is an exercise in demonstration of control loop implementation on a drone

aircraft, discernable, measurable, and reasonable project objectives were hard to define because

it was not clear at the start of the project if this type of control actuation could even be

implemented. A few performance objectives were set that could at least give the project

direction. These performance objectives included:

 Demonstrate Aircraft Control with the use of yaw and pitch control loops.

 Demonstrate Yaw Control within ± 20° from normal.

 Demonstrate Pitch Control within ± 3 ft. of a given set point.

Due to the unknown nature of the vehicle‟s performance under automated control and ease or

ability of operation, no further project definitions, such as response time or settling time, were

defined. FAA regulations and existing school policies required that project testing had to be

performed indoors in a very limited workspace. This prevented more aggressive control

objectives for this project. Nevertheless, basic control was achieved and refinements are being

planned as future work.

Page | 6

2. System Overview

2.1. System Component Description

The project is comprised of three separate sub-assemblies that have been merged together onto

one operational aircraft. The drone itself is a standalone system. With an RC transmitter and

telemetry antenna connected to a ground station, the drone is capable of manual flight, as well as

fully autonomous flight, provided GPS connection has been established and the drone‟s

parameters and proper flight

mode have been set. This

aircraft has been specifically

designed to fly payloads, and

the Pixhawk flight computer

that controls it has been

developed by a team of

engineers outside the scope of

this project. Both are

consumer products that have

been modified for this project

in minor ways to meet project

goals.

The other two systems that comprise a majority of development for this project are the sensors

and control system. This system is almost completely isolated from the Pixhawk and drone in

terms of operation. These systems include an Arduino, PWM board, Lidar sensors, SD Card

reader and 9V power supply, all of which are mounted on the top of the aircraft. This system

provides the distance sensing and calculation, control loop execution, and control signal

actuation to the Pixhawk and drone assembly to achieve automated flight in the “plane lock”

mode. The Pixhawk is not designed to operate in this fashion when purchased directly off the

shelf.

It is important to understand, too, how this actuation occurs. From the point of view of the

Pixhawk, the operation of the drone under manual or automated Arduino control is

indistinguishable, and the Pixhawk does not change any of its operational flight behavior during

the shift between automated or manual control. The only change that occurs in flight is the

origination of input signals for yaw and pitch: either coming from the RC receiver by way of the

RC transmitter from a user, or from the PWM board by way of the Arduino board from the

control loop iteration.

In this way, the Pixhawk and drone provide a stable flight test platform in which to demonstrate

the control capability of the Arduino. When all neutral control signals are sent to the Pixhawk,

Figure 9 - Project aircraft with subsystems in outline
Image courtesy of Ryan Sass, Santa Clara University

Page | 7

the Pixhawk continues to maintain stability and level orientation of the aircraft. When any input

signals move from neutral, the Pixhawk works to control the stability of the aircraft in the new

flight attitude, without any regard to the Arduino control loops or set points. Therefore, the

control exhibited by the Arduino would be no different than if a user was attempting to control

the drone manually.

2.2. Drone System Overview

2.2.1. Introduction to X-8 Drone

The drone aircraft is a 3D Robotics X-8, an

octocopter type platform. The X-8 platform is

an aircraft with 4 main motor booms, oriented

in an X shaped pattern. This means, in

comparison with a conventional aircraft, the

„nose‟ of this aircraft is situated approximately

45° between two of the motor booms. The „8‟ in

the X-8 description is to indicate that this drone

has 8 motors, 2 motors mounted on each motor

boom. It has dimensions of approximately 22” x 28” x 12” (560mm x 710mm x 305mm).

2.2.2. Propellers, Motors and Airframe

The propellers are approximately 10” in diameter. There

are four clockwise spinning propellers and four counter-

clockwise spinning propellers. They are mounted to each

of the motors in a pattern where each motor boom has

counter-rotating propellers. Each motor‟s propeller spin

direction is opposite of the closest three motors. For

reference, the top right motor spins CCW
1
. Establishing

motor spin direction is important for proper control of the

aircraft, as roll, pitch, and yaw, and aircraft stability are

achieved by varying the speed of the proper motors in order to achieve each type of movement.

The airframe of this aircraft is comprised of carbon fiber

for the fuselage and aluminum square channel for the

motor booms. It has „feet‟ type landing skids, which are

comprised of carbon fiber panels with spacers inserted to

give substantial width to the feet.

The main fuselage is comprised of two pieces of carbon

fiber sandwiching the ends of the four aluminum motor

booms. This gives the fuselage an upper, lower, and

Figure 10 - 3DR X-8 Drone
Image courtesy of 3DR

Figure 12 - Motor spin direction for the X-8
Image courtesy of 3DR

Figure 11 - Interior of aircraft where speed

controllers and compnents are located
Image courtesy of Ryan Sass, Santa Clara University

Page | 8

interior location for mounting components. There is also a smaller upper housing on top of the

upper part of the fuselage for extra mounting locations.

The lower part of the fuselage holds the battery as well as an indicator buzzer. The interior

houses the Electronic Speed Controllers (a module which regulates power going to a motor and

modulates speed based on a control signal), power

distribution blocks and power module for the motors and 5V

peripherals, and the PPM sum receiver (the component that

combines the 8 PWM input channels). On the upper part of

the fuselage, the flight computer, a Pixhawk PX4, the safety

switch, telemetry antenna, and GPS & compass module are

mounted. In the space of the landing skid feet, the RC

receiver is mounted for manual user control via RC

transmitter.

2.2.3. Pixhawk Operation

The Pixhawk flight computer manages all flight operations. In normal operation, the drone can

be flown manually by a user sending signals from an RC transmitter to the RC receiver. The

receiver is connected to a PPM sum receiver and combines all 8 control signals and sends them

directly to the Pixhawk. From there, the Pixhawk will handle control of the aircraft motors to

achieve the drone flight commanded from the user. The Pixhawk can also be programmed to fly

autonomously by uploading parameters via telemetry or USB and

establishing a GPS connection
2
.

This means the drone has many modes of operations and can be flown

completely manually, in partial autonomous modes (such as Altitude

hold mode where throttle level is controlled), or completely autonomous

modes (such as flying a route with waypoints, or loitering around a user

selected point at a specified altitude.

All these modes of flight operation assume the craft is being flown outdoors, as the Pixhawk

does not have a way of recognizing any potential obstacles if flying low enough to pose a risk of

collision. For the rest of this report, it will be assumed the drone is operated only in the complete

manual Pixhawk mode when switching between user control and automated Arduino flight. The

project was designed around the Pixhawk operating only in this STABALIZE mode, and in

LAND mode for landing purposes.

2.2.4. Pixhawk Flight Modes

The two flight modes the Pixhawk uses for this project were LAND and STABALIZE mode.

LAND mode – where the thrust axis is set to safely lower the aircraft to the ground – is used as a

failsafe mode in the event of an unsuitable flight condition during normal operation.

STABALIZE mode – allowing a user to fly the vehicle manually, but will self-level the roll and

Figure 13 - Top of the X-8 showing motor

booms and landing skids
Image courtesy of 3DR

Figure 14 - Pixhawk PX4

flight computer
Image courtesy of 3DR

Page | 9

pitch axes, and hold the yaw

heading when flight controls are

neutral. In either of these Pixhawk

modes, no relative control is

calculated by the Pixhawk, the

Pixhawk only executes the

commands issued by the user or

the automation controller.

2.2.5. Control Signals To and

From the Pixhawk

For the Pixhawk to achieve

proper flight orientation and control, the Pixhawk conventionally receives flight control signals

from a user via RC transmitter - in this case an 8-channel transmitter. Four of these channels are

dedicated for the main axes of flight: pitch, roll, yaw, and thrust. The other four channels are

auxiliary channels, two of them being utilized in this project – one for specifying Pixhawk flight

modes and the other for enabling automation of the pitch and yaw axes.

These 8 channels from the user are

sent from the RC transmitter to the

RC receiver on the aircraft. The

signals, from transmitter to

receiver are in the form of PWM

wave – Pulse Width Modulation,

where signal changes varying on

the amount of the cycle being

“high” versus “low”. The

characterized signal is ~380mV,

with a 45 Hz rate, and about a 7%

duty cycle at 50% axis rate. The

signal will vary from about 5% to

9% at the extreme ends of an axis

(i.e. 0% and 100%).

From the RC receiver, the 8 signals, or channels, are combined through a PPM sum receiver.

This PPM (Pulse Position Modulation) sum receiver combines each of the 8 signals into a single

signal by spacing each pulse a given distance apart and summing their signals into a single 8

pulse signal. This signal will carry all 8 channels worth of information during one transmission

cycle. From the PPM sum receiver, the signal is sent to the Pixhawk where it is read.

Once the Pixhawk reads the incoming signals from the PPM sum receiver, it interprets the

commands it receives and calculates how the aircraft must move in response to the

Figure 15 - Pixhawk flight modes
Image courtesy of Ryan Sass, Santa Clara University

Figure 16 - RC Control Signals
Image courtesy of Ryan Sass, Santa Clara University

Page | 10

corresponding control signals. Once the proper movement is determined, the Pixhawk calculates

how each of the 8 the motors must be adjusted to achieve the proper movement, and control

signals to each of the ESC‟s are updated. These PWM signals for each of the 8 motors are sent

out to each of the respective motor‟s ESCs, which adjust each motor speed accordingly.

2.2.6. Basic Power

The Pixhawk receives power via the power module, a voltage regulator that takes the drone‟s

14.7V battery power and regulates part of it to 5V, which supplies the Pixhawk. This power

module supplies the Pixhawk all the power it needs to power all other drone components,

including the GPS/compass module, telemetry antenna, RC receiver, buzzer, and safety switch.

The motors receiver power via the ESC‟s which receiver power from the 14.7V battery through

the power distribution blocks. This modulates power going to each one ESC in order to protect

overloading an individual motor.

2.3. Sensing System Overview

2.3.1. Introduction

The sensing system is the

main component that was

developed to sense relative

distance and orientation to

a vertical wall. The sensing

system includes two Lidar

sensors, a specially

designed mount affixed to

the front of the aircraft, and

an Arduino to support

operation of the sensors.

2.3.2. Lidar Sensors

Two LIDAR-Live v2 “Blue Label” distance sensors were used to sense the yaw angle and

distance the aircraft is from a wall. Each sensor emits a laser light pulse to determine the distance

it is from an object, and outputs a calibrated signal corresponding to the distance the sensor

reads.

The Lidar sensors operate best over a distance range approximately 250 cm to 1250 cm from an

object. The Lidar sensors can perform measurement sensing at speeds up to 500 readings a

second
3
. It is powered by 5V from and communicates via I2C communication protocol. Both

power and communication for the two sensors were handled directly by the Arduino board.

Figure 17 - Sensing system close-up showing mount and sensors
Image courtesy of Ryan Sass, Santa Clara University

Page | 11

Consideration must be taken with these sensors to also provide proper error rejection. If the

sensors fall out of range or to not get an accurate reading, the values provided from the Lidar

sensors could be wildly inaccurate.

2.3.3. Mount

These mount was specifically designed to hold the two Lidar sensors to the aircraft and in the

proper position. This mount holds the two sensors in a differential-style configuration. The

sensors are each tilted 7.5° from a direct normal position when facing the wall. This angling of

the sensors increases the sensor package‟s sensitivity to slight changes in yaw angle.

With differential style sensing, careful

consideration should be used when sensing at

long distances, as the further away the sensor

is from an object, the wider the wall must be

for the sensors to read accurately. This

differential sensing is important, though,

because it allows the calculation of yaw angle

to the wall. When performing relative

distance control, it is necessary to stay as

„squared up‟ to the wall as possible to

provide the most accurate distance readings,

which in turn improves distance control

accuracy.

The Lidar sensor package was mounted on

the very front of the aircraft, pointing forward. This positioned the sensors such that their laser

projections occurred at a level between the upper and lower spinning propeller blades. This

allows the Lidar sensors to take readings with minimal obstruction or interference from the

propeller blades.

2.4. Control System Overview

2.4.1. Introduction

The control system consists of the two control loops that operate simultaneously to automate the

yaw and pitch control of the aircraft during flight. These two control loops operate using PID-

style control. The yaw control system uses only proportional control while the pitch control uses

proportional and derivative control.

Originally, the control loops were to work separately – control yaw until the craft is squared to a

wall and then control pitch. This proved to be problematic and not very functional during flight,

so the two control loops actually work in parallel.

Figure 18 - Lidar sensor mount 3D model
Image courtesy of Ryan Sass, Santa Clara University

Page | 12

 The basic operational flow involves continual

control for the yaw command. If the yaw angle from

the wall is within a certain range of acceptability, the

pitch control loop will also operate.

Both control loops are loaded and executed on an

Arduino board, the same as the Arduino board used

for the sensing system as well. There are breakout

boards for the control system to handle recording

data as well as proper output for system integration.

The operation of the control loops is continuous, and

a user set switch from the RC transmitter will

activate when the control loop signals are sent to the

Pixhawk. This allows for full manual control until

the user is ready to operate in autonomous mode.

2.4.2. Yaw Proportional Control

The yaw control is a proportional control loop. This means that the further the drone is turned

away from the wall, the larger the control signal will be to turn it back to its proper orientation.

As it reduces its yaw error, the control signal to turn the aircraft more reduces until it reaches a

deadband, and the yaw command will return to neutral.

When controlling the yaw of the drone, the Pixhawk does not exhibit drift of yaw. This is

characteristic of the STABALIZE flight mode, however strong enough control signals will

produce minor yaw drift after returning abruptly to neutral. Because of this, derivative control is

not necessary to achieve acceptable control.

2.4.3. Pitch Proportional/Derivative Control

The pitch control is performed with a proportional and derivative control loop. This means that

the further away the drone is from a given distance from the wall, the harder it will push to return

to the set point. However, the derivative part of the control loop will oppose the push of the

proportional control, especially if the drone moves very quickly. This derivative control provides

correction from large control overshoot of the set point as well as control loop stability.

When controlling the distance the drone is from the wall, the Pixhawk can drift a decent amount

when under neutral pitch control, even when the drone is „trimmed‟ properly. This means that if

the drone is given a decent „push‟ forward and then return to neutral, the Pixhawk does not bring

the drone back to an immediate stop, but just returns the aircraft back to a level orientation.

Without drift correction, the drone will coast, much like how a speeding boat will continue to

coast after throttling down. Due to this aircraft drift, the derivative control is very important. The

drift that occurred from proportional control alone was enough to force the aircraft to oscillate in

an unstable control mode.

Figure 19 - Control and Sensing System Layout
Image courtesy of Ryan Sass, Santa Clara University

Page | 13

2.5. Integration Overview

The integration of these two systems allows the aircraft to operate as a standalone package, with

all components (except the RC transmitter) on board the aircraft. The sensing package is

mounted to the front of the aircraft, and its signals and power being provided and received by an

Arduino microcontroller mounted on board the aircraft.

This control loop system is mounted to the top of the drone. The control signals are continually

generated by the Arduino, and through the use of a remotely activated switch, are toggled to be

received by the Pixhawk for flight automation.

This method of integration allows the drone to switch between operation in manual and

automated flight modes seamlessly. This occurs because both manual and automated control

signals operate continuously throughout the flight but only one set of signals reach the Pixhawk.

Therefore, as long as the Pixhawk remains in its STABALIZE mode the drone can switch back

and forth between automated mode and manual control mode without any interruption to the

Pixhawk.

Roll and thrust will remain under control of the user, and during flight operation, minor

adjustments will be required to maintain proper lateral and altitude spacing. This is where

demonstration of the functionality of relative control automation is useful for things such as

surveying or inspection of objects such as tall building, walls, or areas that are hard for humans

to normally reach.

Page | 14

3. Detailed Design Description

3.1. Introduction

The following chapter will discuss in detail what was developed for the project over the course

of the year. The project is broken into the following different areas: sensing system, control

system, system integration, electrical wiring and layout, software design, data collection, and

Pixhawk configuration. This project stated from scratch, and as a result, there were many

different aspects of the project to develop in order to successfully demonstrate operability.

3.2. Sensing System Design

3.2.1. Lidar Sensing System

The design of the sensor system is a specially designed mount with two Lidar sensors attached to

it. The system attaches to the

front of the aircraft, and holds

each Lidar sensor at a slight

angle (7.5°) from facing

directly forward. This angled

difference makes the sensors,

acting in unison, more sensitive

to angular orientation.

The 7.5° mounting angle was

chosen after the first design iteration trying a 10° mounting angle. This larger angle required a

much wider area of wall in order to provide accurate measurements, especially when the sensor

system is at further distances. The mounting angle was reduced in order to reduce the area of

wall required, but also maintain some sensor sensitivity.

To sense the distance from the wall, the two sensor distance readings are averaged. To sense the

relative angle from the wall, a sophisticated calculation is

performed.

In order to find the angle the Lidar sensor is with the

normal of the wall, it is assumed that the sensors were

mounted 15° from one another, and that the distance

between sensors was sufficiently smaller than the distance

from the wall, and was assumed to be zero. This allows

triangulation to occur using law of cosines formula:

Figure 21 - Law of Cosines
Image courtesy of Ryan Sass, Santa Clara University

Figure 20 – Isometric and top view of the sensor system mount
Image courtesy of Ryan Sass, Santa Clara University

Page | 15

With respect to Figure 22, to find the normal angle, C, requires finding angle A, as well as the

NORM DIST and TOTAL WIDTH. Then the law of cosines and Pythagorean‟s theorem can be

applied to find the value of A, which is complimentary to C.

Knowing the angle the sensors are relative to each other, along with their sensor distance

readings, it is possible to calculate the TOTAL WIDTH using the law of cosines. Calculating the

NORM DIST requires taking the smaller sensor

distance value subtracted from the average sensor

distance value. This gives value to the hypotenuse and

opposite sides of a right triangle formed between the

shorter-distance sensor and the average distance. This

is enough information to use Pythagorean‟s theorem to

find the angle A. Taking the inverse sine of the NORM

DIST divided by half the TOTAL WIDTH and

converting to degrees gives the yaw angle the aircraft

is away from normal to a wall.

This formula can be summarized and simplified in the following formula:

√() () ()()

Where:

This formula helped determine accurate angle measurements, even when at extreme angles.

While at small angles, a linear approximation can be assumed, at larger angles greater than 30°

of yaw, a large discrepancy can be seen between a linear approximation and the calculated

Figure 23 - Pythagorean Theorem
Image courtesy of Ryan Sass, Santa Clara University

Figure 22 - Approximate geometry of the Lidar sensors with yaw error
Image courtesy of Ryan Sass, Santa Clara University

Page | 16

approximation. The calibration chart, shown below, depicts this difference and shows how

altering the yaw angle can produce a linear approximation at lower values, but its accuracy

diminishes at higher angles.

Figure 24 - Differential Lidar Sensor Calibration Chart
Image courtesy of Ryan Sass, Santa Clara University

Therefore, while a simple linear approximation between the sensors can be expressed by the

following formula:

 ()

Where:

It is clear that yaw angles larger than 30° and especially larger than 40° exhibit large sources of

error. Therefore the equation for yaw angle was chosen for greater accuracy.

Page | 17

Figure 25 - Arduino Mega 2560 r3
Image courtesy of Ryan Sass, Santa Clara University

3.2.2. Arduino Microcontroller

The Arduino control board chosen for this project is the

Arduino Mega 2560 r3. This board, while large in

comparison to the rest of the Arduino product line, is

still small enough to fit on top of the drone, and has

enough computing power and speed to maintain

reasonable control of an aircraft – a fast moving vehicle.

The Arduino handles all the I2C communication and

power with the Lidar units. It calculates distance and

yaw angle readings from the Lidar sensors, records this information using the SD card reader

board, and uses the Lidar data information in the control system.

3.3. Control System Design and Map

3.3.1. Overall Control Loop Design

The overall design of the dual control loop system is the heart of the automated control. For each

iteration of the main control loop, yaw control is performed and it is determined if the pitch

control loop should be performed or if the pitch control output signal should be set to be neutral.

This determination is based on the state of the sensing system, the calculated yaw angle, and the

relative distance from the wall. If the drone is too close or far away from the wall (i.e. out of

sensor range or too

close for safe

operation), too askew

from the wall to

determine safe distance

control, or there‟s a

sensor reading error, it

will prohibit the drone

from controlling pitch

and restrict the drone to

only yaw control. This

avoids unexpected pitch

commands when in

unusual flight

circumstances.

Assuming none of the error conditions are met, the overall control loop control executes one

iteration of yaw angle control and then executes one iteration of pitch angle control. This process

is continually repeated as long as the Arduino is powered. The output control signals are

Figure 26 - Overall control loop flow diagram
Image courtesy of Ryan Sass, Santa Clara University

Page | 18

generated from the PWM board. The control loops continually operate, even when under manual

control. The PWM control signals, however, are not sent to the Pixhawk when in manual control.

These two loops are specifically designed to work in unison, as working with gated style control

proved to be difficult to achieve smooth pitch control and was unreliable.

3.3.2. Yaw Control Loop

The yaw control loop is modeled after a PID control loop; however it only utilizes proportional

control. The yaw angle is defined by the angle measured between the centerline of the aircraft

and a normal line to the wall. Therefore, when the aircraft is positioned squarely nose first

towards the wall, it is considered to have 0° of yaw angle. Any yaw angle that deviates from this

has either positive or negative degrees of yaw error.

This defines the set point of the yaw control loop. The control loop is hard coded to maintain 0°

of yaw angle, with a deadband of ±3°. The control loop follows proportional control – the higher

the absolute value of degrees turned

away from the set point the aircraft is,

the larger the control signal generated

to return the aircraft to the set point.

The control loop is also coded to limit

the amount of control signal, thereby

reducing excessive control input at

large angles of error.

While the yaw control loop exhibits

some overshoot with proportional

control, there is very little drift produced by the control input, and the overshoot is rapidly

corrected. During flight tests, yaw error settled inside the deadband within 3 seconds. A level of

overshoot was purposely tuned fort the controller, as a more critically damped system was

difficult to observe during video recording of test flights of the aircraft. Over-embellishing the

control response helps demonstrate the control authority of the yaw control loop.

3.3.3. Pitch Control Loop

The pitch control loop is modeled after a PID control loop; however it omits the Integral part of

the control. The distance from the aircraft to wall is controlled by the pitch command, assuming

the aircraft is oriented normal to the wall. The aircraft must have an absolute yaw angle value of

less than 40° in order for the pitch control loop to be active. Actuating outside these yaw

parameters runs the risk of putting the drone in an unsafe position to fly, in the event that there is

something between the wall and the normal distance to the aircraft.

Figure 27 - Yaw control loop flow diagram
Image courtesy of Ryan Sass, Santa Clara University

Page | 19

The aircraft is hard coded to maintain a distance of ~22 ft. or 670 cm from the wall. The

proportional control behaves just the same as the yaw proportional control does – pushing harder

towards the set point the larger

the distance the aircraft is away

from the set point. There is a

very small deadband for the

distance, and there is also an

upper limit of how much

control signal can be provided.

However, due to the fact that

there is substantial allowance

by the Pixhawk for drifting

once a neutral signal is given to

the Pixhawk, derivative control

is also necessary for the drone

to avoid drastically overshooting the set point or behave in an unstable control loop setting.

The derivative control portion of the control loop is necessary to correct for the drift caused by

large control inputs that can occur from the Arduino. This derivative control, which keeps

memory of the previous iteration‟s amount of distance error, opposes fast movement towards the

set point, and contributes to its settling time. When the aircraft overshoots the set point, the

derivative control promotes more movement away from the set point; however the proportional

control is tuning to overpower the derivative control input in order to avoid it being an issue for

control.

3.3.4. Mechanical Actuation

Mechanical actuation of the drone is performed by the Pixhawk which receives control signals

from the Arduino and PWM board or the user. To achieve motion, the Pixhawk will control

altering groups of motors in order to achieve the motion desired. For the three primary control

axis – roll, pitch, and yaw - actuation requires motors change their speed in two groups of four

motors, and the corresponding adjustments adjust so the net sum of the thrust produced remains

constant. It is important to note that as the moment produced by thrust changes the orientation of

the aircraft, this will change direction of thrust with respect to gravity, and gives the appearance

that net thrust changed. However during pure single axis control changes this is not actually the

case.

The fourth axis of control, thrust, is the exception to motor actuation. When the throttle axis is

actuated all 8 motors work in unison. Increasing speed of all the motors increases thrust and lift,

but no changes in moment of any axis occur. Decreasing speed of all the motors decreases thrust

and lift, but again, no changes in moment of any axis.

Figure 28 - Pitch control loop flow diagram
Image courtesy of Ryan Sass, Santa Clara University

Page | 20

For the actuation of any control axes, motor adjustment is executed and controlled by the

Pixhawk, which receives user commands and determines what motor actuation to perform to

achieve proper flight axis movement.

To roll, the Pixhawk adjusts the group of four motors on the left and right side of the aircraft.

This reduction in thrust on one side and increase on the other will create a moment and roll the

aircraft. To pitch, the Pixhawk adjusts the group of four motors in the front of the aircraft and the

back of the aircraft. This effect is the same as the roll actuation, just performed along the pitch

axis instead of the roll axis. To yaw, the motors actuated are based on their spin direction. The

counter clockwise and clockwise spinning motors adjust speed in opposition. The end effect is

no net change in thrust, but a change in net torque produced by the motors. This creates the yaw

movement. To achieve complete flight actuation, the adjustments the Pixhawk makes to the

motors is a superposition summation of all four axes of flight applied to each motor.

Unlike a conventional helicopter, thrust is generated by the speed at which the propellers spin,

not the angle at which the propeller blades meet the air. This means that in the event of one or

multiple motor failures, the Pixhawk will attempt to regain flight stability; however this

compensation may be extremely difficult to control. Also, unlike a conventional helicopter, in

the event of battery failure, autorotation is not possible and the drone will glide like a brick.

3.3.5. Arduino and PWM Servo Board

The Arduino and the PWM servo board are the primary components that handle the control loops

and output. The Arduino board handles execution of the control loops, and is the same

component shared with the sensing system described in Section 2.3.

The PWM board, described later in Section 3.4.4, handles generating the output signals as

determined by the Arduino, in order to achieve signal the Pixhawk to achieve mechanical

actuation. In communicating with the PWM servo board via I2C, the Arduino acted as the master

controller, while the other peripherals were assigned as slaves.

3.3.6. SD Card Reader Board

The Adafruit Micro SD card breakout board

(254), also referred to as the SD card reader

board, is a small board designed to handle the

data recording of the control loops for

performance analysis. The SD card reader

board is attached to the Arduino through

digital pins 50-53, and transfers data via SPI

Protocol. This protocol is a much faster data

transfer method than serial output, and

therefore reduces the impact to control loop
Figure 29 - Adafruit Micro SD card
Image courtesy of Adafruit

Page | 21

execution speed by the Arduino control loops perform to report the data.

Data recording and transfer is a challenge for this project. Because the drone is airborne,

umbilical style data transfer isn‟t practical and transfer via wireless communication wasn‟t

explored due to time constraints. Also, handing serial data logging can reduce the Arduino‟s

speed to execute control loops as well, and could affect how well the control loops perform.

Luckily, the change in performance using SPI protocol and no data recording is not noticeable

from a visual perspective. This breakout board allows data recording of the Lidar sensor input

and the PWM signal output values in a real-time setting with minimal changes to the operation of

the software or flight performance.

3.4. System Integration

System integration required sending the output signals generated by the control loop system to

the Pixhawk in the same size and frequency as normal RC signals. It also required the ability to

toggle between automated and manual control for flight safety. This was achieved by a RC

activated switch and relay. Other aspects of integration cover the mounts installed on the aircraft

and proper Pixhawk configuration.

3.4.1. Pitch and Yaw Signal Handling

In order to signal the Pixhawk to perform motion, whether in automated or manual control mode,

all control signals go through a PPM sum receiver. This component accepts eight PWM input

signals – including pitch and yaw, combines all eight into a single signal, and sends them directly

to the Pixhawk where actuation occurs.

In order to integrate two separate modes of flight, manual and automated, handling to two sets of

control signals for pitch

and yaw was required. To

handle switching between

manual control and

automated control, a RC

activated switch and DPDT

relay were utilized to

handle directing the sets of

control signals into the

Pixhawk inputs.

The DPDT relay‟s switch

contacts connected the

PPM Sum receiver‟s yaw

and pitch inputs to either

set of control signals. The manual yaw and pitch signals (FROM the RC receiver) are connected

Figure 30 - Physical Layout of the pitch and yaw signal handling components
Image courtesy of Ryan Sass, Santa Clara University

Page | 22

to the NC switch contacts of the DPDT relay, and the automated yaw and pitch signals (FROM

the PWM board) are connected to the NO relay contacts. Manual control was purposefully

chosen to transmit through the NC contacts. In the event of Arduino failure or relay failure, the

relay would most likely switch off and the NC contacts would return to their normal position.

This would maintain manual control input during component failure.

3.4.2. RC Activated Switch

The Turnigy Receiver Controlled Switch, referred to as the RC activated switch, is used to

provide power to the DPDT relay. The DPDT relay handles switching between the automated

and manual yaw and pitch control inputs. When the DPDT relay receives power at the coil, it

connects the NO contacts to the poles. When no power is supplied to the relay, the DPDT switch

connects the NC contacts to the poles. The RC activated switch switches power to the relay coil,

and in effect controls the switching between manual and automated control.

Figure 31 - Signal flow chart for manual and automated control
Image courtesy of Ryan Sass, Santa Clara University

Page | 23

This switch operates by reading auxiliary channel 1 from the RC

receiver and will open or close its internal SPST switch if the RC

duty cycle of the signal it receives is high or low.

This switch allows reliable switching between automated and

manual control of the two axes of fight control. To make this

switch operate with an RC transmitter, an auxiliary channel on the

transmitter that is operated by a SPDT switch must be chosen to

activate the RC activated switch

3.4.3. DPDT Relay

The DPDT relay and RC activated switch are the key safety features to allow development of

Arduino automated flight. Because

automated flight of the aircraft would be

incredibly risky to test for the entire

duration of a test flight, the DPDT switch

allowed the state of automation to be

toggled.

The relay was a concern in the electronic

design because of the physical nature of the

switching contacts and susceptibility to

vibrations, especially when mounted to a

drone with 8 spinning motors. However,

during flight testing and operation, this did

not prove to be problematic. More extensive

testing should be considered to find the most robust relays or discreet device available to handle

the switching of the signals.

3.4.4. PWM Servo Board

The Adafruit 16-Channel 12-bit PWM/Servo

Driver –I2C interface – (PCA9685) is designed

to generate PWM signals specified from an I2C

command
5
. Its primary design is to handle

controlling power and signal processing for

small RC servos to operate. However, in this

project, the power handling is disregarded and

the PWM output signals are strictly used in

order to interface with the Pixhawk‟s PPM sum

receiver to send proper control signals.

Figure 32 - Turnigy Switch
Image courtesy of Ryan Sass, Santa Clara University

Figure 34 - Adafruit Servo Board
Image courtesy of Adafruit

Figure 33 - Close-up of DPDT Relay
Image courtesy of Ryan Sass, Santa Clara University

Page | 24

A PWM servo board was chosen for two reasons. First, the board is programmable to adjust the

PWM signal frequency to the proper value. Second, the board provides a decent resolution of

duty cycle for the PWM signal, since the duty cycle of a flight control axis (from 0% to 100%

range) ranges from 5% – 9% PWM duty cycle. These considerations were aspects the Arduino

board could not perform without loss of resolution or performance.

The PWM servo board output signals required characterization and tuned in order to match its

output signal to that of an RC signal. This was performed using a digital oscilloscope as well as

changing the parameters in the software of the driving Arduino. Once these values were tuned

and set, no confirmation checks were performed, as there is nothing built in to do so. The only

feedback that the signals produced by the board are correct is when control authority by the

Arduino is exhibited. This board is powered by 5V from the Arduino and communicates via I2C

communication protocol.

3.4.5. Signal Triggering

While it was a concern that the signals from the RC receiver and the PWM board going to the

PPM sum receiver might have to have a common trigger in order to successfully be combined,

this did not prove to be necessary. It appears the PPM Sum Receiver can handle the switch

successfully regardless of when each signal starts its duty cycle.

The only point to note is the PPM sum receiver‟s blue signal light, which during normal

operation has a slow-steady blink. This will change to rapid blinking for a few seconds when the

signals sent to the PPM sum receiver toggle between the automatic and manual set of signals.

This is a clear indication that the PPM sum receiver is dealing with the change in signal start

times, however signal triggering did not prove necessary and the PPM sum receiver handled it

flawlessly.

3.4.6. Mounting

Mounting to the drone was a very important to put all the added hardware onto the drone.

Components had to be to access for service or troubleshooting, be securely kept out of the way of

the propeller blades, maintain a low enough profile to avoid snagging on things or coming loose

while flying, and positioned in areas to avoid destruction in the event of a crash.

The mount for the Lidar sensors was created using a 3D printer, and created in ABS plastic. It

included slotted holes for mounting to the aircraft to facilitate easy installation as well as

allowing more tolerance for the 3D printer. The Lidar sensors are attached to the mount via four

through holes and zip ties.

The other mounts created for this project included the PWM board mount and the Arduino

mount. Both of these mounts were created with a 3D printer in are of ABS plastic. The PWM

board is affixed to the aircraft via adhesive backed plastic Velcro. The Arduino board is affixed

to the aircraft via mounting screws. The screws were already in use to hold the top carbon fiber

Page | 25

plate to the aircraft. To install the peripherals to the mount, a press-fit style installation was used.

This style was chosen because it provided secure installation during flight and easy removal

during service, maintenance, or removal. While inverted flight was not a consideration in any of

the flight modes of this aircraft or project, the mounts proved robust enough even during periods

of aircraft inversion, such as accelerometer or compass calibration.

The Arduino board is mounted just above the Pixhawk, and directly behind the PWM board.

When installed, the Pixhawk does not usually require regular access. Mounting the Arduino on

top of it reduces the ease of access to the Pixhawk. This proved to be a suitable solution though,

because the Arduino required more frequent access in order to troubleshoot as well as plug wires

into. This proved an adequate location that maintained low profile while allowing very easy

access.

The breadboard, used for handling power and signal distribution, is mounted directly behind the

differential sensors on the top of the aircraft. It is mounted in a position where it is fairly close to

all components including the PPM sum receiver to allow for short wiring requirements between

individual components.

All of these added components and mounts did add weight to the aircraft; however this did not

affect the overall flight characteristics of the drone. The Pixhawk is designed to compensate for

any change in weight balance, and while the added weight shift is believed to be minimal for this

size of drone, the Pixhawk managed to compensate without issue. The drone also did not exhibit

Figure 35 - Control and Sensing system mounts with their corresponding hardware in place
Image courtesy of Ryan Sass, Santa Clara University

Page | 26

any signs of reduction in movement agility.

The motors still provided a substantial

amount of lift, translating to strong control

authority of the drone.

3.4.7. Pixhawk Flight Mode

For this system to operate, the Pixhawk

must be set to STABALIZE flight mode

during the duration of flight. This includes

when operating in either manual or

automated control modes. Only in

emergency situations was the LAND mode

ever used.

3.5. Electrical System Wiring and Layout

3.5.1. Power and Grounding

 There are two main sources of power for this drone. The primary source of power comes from

the large 14.8V Lithium Polymer battery. This battery supplies power to the 8 motors and the

power module, which generates 5V for the Pixhawk, the RC receiver, GPS and compass,

telemetry antenna, PPM sum receiver, and RC receiver. The other power supply is the 9V battery

that powers the Arduino. The Arduino‟s regulated 5V output powered the two Lidar sensors, the

PWM board, and the SD card board.

While the 14/5V Pixhawk and aircraft electrical systems are almost completely isolated from the

Arduino‟s 9/5V supply, there is still signal sharing between the PWM board and the PPM sum

receiver. This means that the two systems must be grounded together in order to have proper

signal voltage levels.

To achieve proper grounding, the negative contacts on the RC receiver, which receive power and

ground directly from the PPM sum receiver, are connected to the ground on the bread board,

which is connected to the PWM board, as well as the Arduino, Lidars and SD card reader board.

While all the components are essentially grounded to one another, there might be a difference

between ground of components on the far end of the ground loop circuit. Most importantly

however, the ground between the PWM board and the RC receiver, the two components that

send similar data signals from different sources of 5V power are grounded almost directly

together. This was specifically chosen to provide the shortest grounding path between the two

components for clarity with each signal being generated. It proved to be successful for signaling

purposes as the PPM sum receiver recognizes both signals without any notable issues.

While power directly from the drone‟s battery, ranging from 13.5V – 16.5V, was considered as a

possibility for powering the Arduino (it can accept up to 20V), it did not prove to be regulated

Figure 36 - Components mounted to the aircraft
Image courtesy of Ryan Sass, Santa Clara University

Page | 27

Figure 38 - Power and ground wiring schematic
Image courtesy of Ryan Sass, Santa Clara University

properly or provide stable

enough results with the

Arduino‟s 5V regulated

output. Therefore, while

future modifications should

include an improved power

supply for the Arduino

control loop assembly, 9V

power is used for this project

and worked satisfactorily.

3.5.2. Arduino Wiring

The Arduino was the main

component that powered

most of the other controller components, as well as sending communication signals to each of

Figure 37 - Arduino board wiring
Image courtesy of Ryan Sass, Santa Clara University

Page | 28

these components. With the exception of the SD card, most of the wiring for the Arduino is

connected to a breadboard so that power and communication signals are easily distributed to

other components. The Arduino communicates with the PWM Board and the Lidar sensors via

I2C, which requires Power, Ground, SCL, and SDA connections, all of which can be connected

together, since individual communication is done via

addressing for I2C. The SPDT switch is the signaling

switch to indicate when to record and stop recording data

to the SD card board.

Also, a universal indicator light, powered through pin 31,

is attached to the board directly. This will be described in

more detail in Section 3.5.6, but was used for in-flight

trouble shooting, and ultimately indicates the status of

pitch control in the final version of the software.

3.5.3. PWM Board Wiring

The PWM board requires simple connections to the

Arduino, as it only needs power, ground, and SCL/SDA

connections for I2C. With the exception of ground (for the

sake of shorter wiring), all the wires from the PWM board run directly to the breadboard, since

all connections to the PWM board are shared with other components.

Wiring of the PWM output pins are also connected to the breadboard, where they are routed

through the DPDT relay.

3.5.4. Lidar Wiring

The Lidar is wired in a similar fashion to the PWM

board. All the connections, including the PWR EN

connections, go directly to the bread board. The 5V,

GND, SCL, and SDA connections are related to I2C

communication.

Since each sensor had 5 connections (PWR, GND, SCL,

SDA, PWR EN), all but the PWR EN connections are

shorted together and treated as 1 sensor input. This

proved better space efficiency for wiring on the

breadboard. The PWR EN wiring had to be treated

independently because each signal is used for changing

the addresses of the Lidar sensors for I2C

communication, and are specifically used when multiple

sensors are connected using I2C communication.

Figure 39 - PWM Board Wiring
Image courtesy of Ryan Sass, Santa Clara University

Figure 40 - Lidar Wiring
Image courtesy of Ryan Sass, Santa Clara University

Page | 29

3.5.5. Breadboard Wiring

The breadboard is the junction between many components. Connections of power or signal

included the Arduino, Lidar Sensors, PWM Board, RC Activated switch, DPDT relay, PPM Sum

receiver, and RC receiver. The connections of +5V, GND, SCL and SDA all arrive at this board

to be connected to other components.

The grounding of the RC receiver to the Arduino/ PWM Board ground is also wired here.

This is also the location of the Arduino automation control light, which provides visual feedback

to the user that the Arduino has taken control of the yaw and pitch axes of flight.

Figure 41 - Breadboard Wiring
Image courtesy of Ryan Sass, Santa Clara University

Page | 30

3.5.6. LED Indicator Lights

There are two LED indicator lights on the aircraft. Each is designed in a similar manner but each

are meant to indicate two separate pieces of information. Both are red LED‟s, and are connected

to 5V in series with a 1 kΩ resistor. This gave the user visual binary feedback to confirm states

of the aircraft during flight.

One indicator light is the automation indication light. This

light illuminates when the DPDT relay is active. The light

is an indicator that the DPDT relay‟s NO switch contacts

are closed, and the Arduino is in control of the pitch and

yaw axes. This allows visual feedback of when the aircraft

is operating in automation and when it is not. The power

supplied to this light comes from the Arduino and travels

through the RC activated switch SPST contact. This design

was chosen in the event of Arduino failure or RC switch

failure; the light will always provide accurate feedback of

the state of the relay. If the light is active, the relay is too.

This light is mounted to the breadboard directly. The

wiring for this light can be seen in Figure 41.

The second indicator light is the universal indicator light,

mounted directly to the Arduino. This light, connected from digital pin 31 to ground, will

illuminate when certain flight conditions are met. This provided feedback of the state of the

control system under certain flight conditions in the dynamic test environment. This light is

considered universal as it is user programmed to indicate any single parameter the user can

choose. Over the course of its use, it reported state of things including excessive yaw drift,

sensor read error, set point or deadband locations, and

pitch control active/inactive. The light can only be used to

indicate one status, and its state has to be known ahead of

time when the Arduino was programmed to be understood

or useful. The wiring for this lights can be seen in and

Figure 37.

3.5.7. DPDT Relay and RC Activated Switch

It can be seen how the RC activated switch and the DPDT

relay are connected. All the wiring for these devices is

connected through the bread board, with the exception of

the AUX 1 channel from the RC receiver. This connection

provides the RC activated switch the RC PWM signal and

is connected directly to the RC receiver.

Figure 42 - DPDT relay and RC

activated switch wiring
Image courtesy of Ryan Sass, Santa Clara University

Figure 43 - PPM sum receiver and RC

receiver wiring
Image courtesy of Ryan Sass, Santa Clara University

Page | 31

3.5.8. PPM Sum Receiver and RC Receiver Wiring

The PPM sum receiver is the device that takes 8 PWM signals, commonly generated from the

RC receiver, shifts and combines them into one signal that the Pixhawk then reads. The PPM

sum receiver receives power and ground from the Pixhawk directly, and supplies the RC receiver

with power and ground. The PWM sum receiver has 8 input channels to accept incoming signals.

The Pixhawk expects that the assignment of signals for the first four channels is as follows:

1. Roll

2. Pitch

3. Throttle

4. Yaw

The rest of the 4 auxiliary channels can be assigned to any number of switches or dial on the RC

transmitter, depending on the configuration of the Pixhawk and the aircraft. One important

channel to note is Channel 5. This channel of the PPM sum receiver is the indicator channel to

the Pixhawk about what flight mode the Pixhawk should be operating in. Based on the

configuration of the Pixhawk, up to 7 different user assigned Pixhawk modes can be selected

depending on the RC duty cycle of the signal going into Channel 5.

For this project, this channel 5 signal was assigned to a 3 position switch that the RC receiver

output on its AUX 3 channel. Originally the project intended to utilize three different flight

modes: Land, Stabilize, and Alt Hold. Ultimately the Alt Hold mode was removed from the

selection and Stabilized mode was assigned in its place.

Most of the signals from the RC receiver are wired directly to the PPM sum receiver with the

exception of ELE, RUD, and AUX 1. ELE and RUD (short for Elevator – the control signal for

pitch – and Rudder – control signal for yaw) are wired to the breadboard along with Channels 2

and 4 from the PPM sum receiver. AUX 1 channel on the RC receiver is wired directly to the RC

activated Switch.

3.5.9. SD Card Board Wiring

The SD Card Board was wired directly to the

Arduino. It included digital pins 50 – 53 for

communication, as well as +5V and GND. Also, a

SPDT switch was attached to the Arduino connecting

either +5V or GND to digital pin 17 in order to signal

the SD card to write data or to stop writing data and

complete the creation of the file. This switch is

important to toggle; after flight data was recorded on

the SD card, the file had to be finalized in order to be

a functional, usable file.

Figure 44 - SD Card Board Wiring
Image courtesy of Ryan Sass, Santa Clara University

Page | 32

3.6. Software Design and Flow

3.6.1. Introduction

The software developed for this project was written for the Arduino, however small parts of

software configuration are required for the Pixhawk as well.

The bulk of the code was developed to be compartmentalized for easier understanding, as well as

easy alteration as the code developed during flight testing.

While a the majority of the code was created and developed as an individual effort, the software

to handle the data writing to the SD card reader board integrated into the final software was a

joint development effort, with software creation to handle SD card interface handled by Ryan

Cooper from Santa Clara University.

Evolution of the software was numbered in versions. The primary number of the software

indicated the following development notes:

1. v0.x – Experimental and Early Stage Software. Intended for development of each

different part of the software, and not intended for complete automated control.

2. v1.x – First control iteration of combined automated pitch and yaw control. Pitch and

Yaw control worked in a gating manner – i.e. the yaw control loop would align the drone

to the wall then stop executing and the pitch control loop would then distance the craft

from the wall. Any deviation from the yaw error deadband during pitch control would

terminate the pitch control loop and execute the yaw control loop again until back into

the yaw error deadband.

3. v2.x – Second control iteration of automated pitch and yaw flight. Pitch and yaw control

worked simultaneously.

4. +v2.5 –Control loop flight software including SD card writing software added

5. v2.6 – Final version of the code used for this project.

In the following sections, the individual aspects of the software are described more in detail.

3.6.2. Arduino Software

The Arduino software was written to handle the dual control loops execution, the sensor input

handling, the output signaling, data recording, and processing the control algorithms.

The Arduino software is very simple in its implementation. Upon powering the Arduino, a one-

time „setup‟ command list is executed. Then, an eternal looping „loop‟ command list is executed

again and again. The loop command list will continue until either a reset is initiated or power off

occurs.

The software for the control loop was simple to process. It includes pinging, reading, and

processing the input from the Lidar sensors. Calculations including averaging the input signals

Page | 33

and calculating the yaw angle offset occur. It will also calculate if the pitch control loop should

be executed for the loop iteration or set the pitch control signal to neutral. It then initiates an

iteration of the yaw control loop to determine the yaw output value. Then, depending on if the

pitch control loop can execute, it performs an iteration of the pitch control loop. If the pitch

control loop cannot execute, the pitch control output value is set to neutral. Finally, the software

pings, and sets the output PWM values for the yaw and pitch control signals that were calculated

by the control loops. This loop is executed in a matter of milliseconds and is then repeated again

and again.

3.6.3. Main Code Flow

The overall flow of the software was developed to be incredibly basic. In the Arduino code, there

is a “setup” routine that is performed once at the start of every power up or reset cycle, and a

“loop” routine that is executed indefinitely until a reset or power off occurs.

The setup routine of the code involves loading proper libraries, initializing variables and arrays,

configuring certain Arduino I/O pins and configuring the addresses for the Lidar and PWM

board, establishing PWM output frequency, and initializing the SD card for file writing.

The loop routine of the code is where the control loops are executed, the Lidar are used to take

measurements, and distance and angle values are calculated. Throughout the looped code there

are small lines of execution for the SD card software to write data during execution. The basic

flow is as follows:

1. SD Card Data write and switch check

2. Lidar Sensor Read and Signal Processing

3. Yaw Control Loop Iteration

4. Pitch Control Loop Iteration OR Set to Pitch Neutral (depending on the state of the yaw,

as determined in the Lidar Signal processing)

5. Set PWM board output Values

Once an iteration of this loop is executed, the Arduino will start again from the top of the list and

run through these functions again and again, until a power off or reset. The control signals are

continually sent out, regardless of if the user has switched to automated control or not. In this

way, there is no need to sync the Arduino with the RC activated switch or delay for initialization

when automated control is desired. The signals are just routed to the DPDT switch and channeled

to the PPM sum receiver when the user switches to automated control.

3.6.4. Lidar Sensor Read and Signal Processing

The Lidar sensor read function will take five sensor reading values from each sensor, with a 2

millisecond delay between each reading. It will average each respective sensor‟s value based on

the five readings. The number value each Lidar sensor returns after a measurement is the amount

of centimeters, in straight line distance, to the object the light reflected off of.

Page | 34

After obtaining average sensor values, the two signals go through processing in order to

determine distance, angle, and yaw state. First, the distance is determined, simply by taking the

average the two Lidar sensor signals. While this is error in this method of distance calculation, as

the drone is actually slightly closer than the given average reading values (due to the angular

shift of the sensor package), the difference between the actual distance and the calculated

distance the aircraft is from the wall is small enough to be considered negligible.

Next, the angle of the yaw is calculated. This calculation is described in greater detail in Section

3.2.1. With the angle and distance determined, error checking is performed on the two sensors,

checking for conditions where pitch control should be disabled for aircraft safety and stability in

unusual flight situations. These conditions that are checked are as follows:

1. Distance to the wall is less than 250 cm (Too close)

2. Distance to the wall is greater than 1250 cm (Too far away)

3. Any sensor returning a negative value (Usually not reading off the wall, and not getting

proper measurements from the sensor)

4. Calculated yaw angle is greater than 40° to the left or right. (Too mis-aligned from a wall,

pitch control would not be a safe mode of operation because of the lack of clear space to

move laterally).

If any of these conditions are met, pitch control is disabled so that a user may take control of the

aircraft if during these conditions the drone is in an unsafe orientation or flight condition (i.e.

drifting rapidly towards or away from an obstacle).

3.6.5. Control Loops

The control loops perform one iteration during each execution of the Arduino‟s “loop” routine.

The yaw control loop operates indefinitely, and there are no conditions under which the yaw

control will stop operating. The pitch control loop, however, does have conditions, described in

Section 3.6.4, during which it will and will not operate for flight safety considerations. This

allows the pitch control to not fly the aircraft in an unsafe manner during bad sensor readings.

The yaw control loop compares the current yaw angle to a hard coded set point, in this case,

0° yaw angle. Knowing yaw direction with respect to the wall, based on which sensor reading is

larger than the other, the control loop will executes a deadbanded, limited, proportional control

iteration to correct this yaw error.

The pitch control loop compares the current distance of the aircraft from a given set point, in this

case, a hard coded 670 cm distance from the wall. Knowing the aircraft‟s current distance as well

as its approximate distance from the last iteration, it executes a deadbanded, limited proportional

and limited derivative control loop iteration to correct this error. Unlike the proportional control

portion of this loop that gives the drone and increase in signal to return to the set point as the

drone moves further away, the derivative term actually opposes the proportional control input,

Page | 35

thereby controlling the speed by which the drone will approach the set point and reduces set

point overshoot.

More details of these control loops are discussed in Section 3.2.

3.6.6. PWM Output

The PWM output function is a very simple routine. Having the current pitch and yaw control

adjustments calculated by the control loops‟ execution, the PWM output function adds these

adjustments to the neutral output value to give a proper control signal output value. For the pitch

command, a hard coded added „trim‟ value is included to this addition which helps compensate

for the natural forward or backward drift of the aircraft. This value is determined during flight

tests of the aircraft flying with neutral commands.

This function follows the following calculations to determine output values:

Once these values are set, the function then calls the PWM board to update the PWM output

values, and the signals then can travel to the PPM sum receiver for a change in flight control.

3.6.7. SD Card Read/Write

The Arduino sends data to an SD card breakout board using the Serial Peripheral Interface (SPI)

protocol. The breakout board writes this data onto an installed SD card. To keep the SD file

operations simple, the file names generated on the SD card are limited to a few characters, in this

case assigning each successive filename a number. Filenames would always be an increment in

numbering from the previous created file. Once the file is created, the Arduino can continuously

write data to the file on the SD card. The most important file operation, though, is closing the file

to ensure generated data will be properly saved prior to the Arduino powering off. A SPDT

switch was used to indicate when the Arduino should initiate commands to close the file in order

to retain all the data.

3.6.8. Pixhawk configuration

The Pixhawk must also be configured to operate with the Arduino, otherwise the input controls

will not function as expected. Using the Pixhawk software, called Mission Planner, to set up

complete calibration for the drone – including accelerometers, compass, GPS, ESC‟s, radio, and

battery monitor - a few other things need to be configured.

First, the stability control rates for pitch and roll can be tuned on the Pixhawk for a snappier or

softer feel as the drone flies. These values were tuned to be more on the soft side, as the primary

Page | 36

mode of flight for this drone was in a small space indoors and fast, rapid movements while under

automated control was undesirable.

Second, the flight modes need to be configured to one of the RC transmitter switches in order to

communicate to the Pixhawk which mode to operate in. Also, the flight modes needed to be

assigned so that the Pixhawk will operate in a non-GPS required mode (such as Stabilize). This

allows the drone to take off and fly. If in a GPS required flight mode, the drone will refuse to fly

until a GPS connection is established.

Finally, the battery failsafe should be configured so that the drone doesn‟t run through the

entirety of the batteries prior to landing as well as protecting the integrity of the batteries. Due to

the nature of a drone, no autorotation can occur, so if the motors all stop due to battery failure,

the drone will fall directly to the ground.

3.7. Data Collection and Processing

The data logged to the SD card during test flights included the following five values:

1. Elapsed time in milliseconds

2. Readings from both the left and right Lidar sensors

3. Yaw and pitch control output values the Arduino calculated

These values were continually logged, updating approximately every 200ms. This update time

reflects the total time to not only log the data, but process the control loops, read the Lidar data,

and update the PWM board as well.

Once data was recorded and finalized after a test flight, it was transferred off of the SD card to a

computer. From there, the delimited file could be reviewed using a program such as Microsoft

Excel.

3.8. Pixhawk Flight Modes, Failsafes, and Parameter Settings

3.8.1. Pixhawk Firmware and Interface

To send parameters and update values for the Pixhawk, Mission Controller, a software interface

specifically developed to interface with the Pixhawk, is used to set any values or parameters

requiring adjusting (such as flight modes, failsafe modes, or stability control parameters). These

values are updated by connecting the computer to the Pixhawk via telemetry antenna or USB.

The Pixhawk firmware was not directly used in terms of this project, but was used for Pixhawk

and drone configuration. The Pixhawk firmware has multiple levels of operation, but the two

important ones to worth noting are flight control and flight operation firmware.

The flight control firmware deals with controlling the motors of the aircraft in order to maintain

stable control of the aircraft. Multiple parameters are specified to the Pixhawk, including the type

Page | 37

of aircraft, number of motors and motor orientation. With the integrated accelerometers in the

Pixhawk, it calculates how the Pixhawk should be oriented to achieve stable level flight, and

then calculates – based on its assumed flight frame and shape and motors controlling – what

control signals to provide each motor to achieve the proper flight orientation. It then uses control

loop feedback to correct the motors it controls in order to achieve actual level flight.

The flight operation software works on top of the flight control software. This software works to

actually allow the drone to be controlled, either flying autonomously with preset missions loaded

on the Pixhawk or by manual control. In manual control, the Pixhawk will adjust the motors

based on the 4 axes of flight control to produce the roll, pitch, yaw, and thrust performance that

the user commands.

In the Pixhawk firmware, there is a lot more sophistication, automation, and features that will not

be discussed but are useful. However, another important note includes the failsafes the Pixhawk

can monitor, including low battery or failed sensors. In the event of a failsafe, the Pixhawk will

control the throttle to bring the aircraft to the ground in a safe, controlled descent. It does not,

however, control any of the other axes of flight, and they remain under manual user control.

3.8.2. Flight Modes

Flight modes can provide a good failsafe in the event of unsafe flight operation. Originally, the

intended operation of this aircraft was to operate in one of three modes, and the signal to switch

between them was assigned to a switch on the RC transmitter that has three positions. These

modes included:

1. Land –bring the aircraft to the ground in an expedited but controlled descent. Throttle

input is automatically set, but roll, pitch, and yaw are still under user control.

2. Stabilize – the aircraft will maintain straight and level flight until manual input is

received from the transmitter. All 4 axes of flight are under manual control. Upon

returning roll, pitch, or yaw axis controls to a neutral position, the aircraft will return to

level flight, although drift may occur.

3. Altitude hold – similar to Stabilize flight mode, however throttle is controlled to hold a

given barometric and/or (if enabled) GPS calculated altitude. Roll pitch and yaw control

is still enabled, and throttle is automatically adjusted when these flight inputs affect

altitude.

While altitude mode was ultimately removed for this project due to the lack of ability to test the

robustness and reliability of the flight mode, each mode listed above was a failsafe for the mode

that succeeded it. So, if in altitude mode, the user can switch to manual mode and take control of

throttle once again. In the event of an unsafe flight mode in manual mode, the user can switch to

land mode, and the aircraft will attempt to rapidly but safely descend to the ground. This should

reduce the chance of a crash landing if the user would have difficulty in landing the aircraft

Page | 38

manually, such as if in a difficult flight situation or when close to obstacles during an emergency

landing.

3.8.3. Important Pixhawk/Mission Planner Parameter Settings

The most important parameter setting is the battery failsafe. It must be configured to the proper

monitor and set to monitor voltage and amperage. This will protect the drone from destroying

itself or the battery failing mid-flight. For a battery failsafe, the LAND mode is automatically

activated, and the reserve battery power was set to the lowest value (1000 MAH), as flying

within 3‟ to 8‟ of the ground required little power to accomplish a fast landing.

Another important set of parameters to check is ensuring the motors of the drone operate in their

assigned position. This check is important to perform, with the propellers off, when initially

installing a Pixhawk to the aircraft.

Lastly, the roll/pitch sensitivity was tuned to very low values (0.1159) in order to keep the

drone‟s roll and pitch rates low. Also, the throttle hover setting was set to a mid-level value (500)

in order to reduce the sensitivity of the throttle was performed. In this case

Page | 39

4. Testing

4.1. Introduction

Testing for this project was conducted to prove the concept and feasibility of operation.

Therefore, the parameters for final flight performance were defined to prove that a

microcontroller could achieve autonomous control of a drone. The following performance

objectives were set for development and testing:

 Demonstrate Aircraft Control of yaw and pitch axes using control loops.

 Demonstrate Yaw Control within ± 20° from normal.

 Demonstrate Pitch Control within ± 3 ft. of a given set point.

Throughout the course of the school year, testing varied as the project developed. During the fall

quarter, testing efforts were directed to prove the overall design of the control loop assembly

could successfully recognize a wall and exhibit motor reaction on the then propeller-less drone as

the orientation of the wall to the aircraft changed.

Testing efforts during winter quarter were to prove the operation of the control loops on a 2

dimensional vehicle – in this case on a rover bot. This allowed for design verification of the

general control loop theory, electrical, and software aspects of the project prior to equipping and

testing a drone.

Finally, efforts for testing during spring quarter involved proving successful automated flight of

the drone and demonstrating basic control loop response in the yaw and pitch axes.

4.2. Fall Quarter – Demonstration of Project Feasibility and Limited Operation

The first phase of testing for this project involved demonstrating project feasibility. This

included proving that hardware choices selected were capable of performing as required. Also,

signs of control reaction of the drone motors needed to be demonstrated. The specific list of

objectives for project feasibility for the fall quarter included:

1. Demonstrate multiple Lidar Sensors can operate and provide accurate data when

connected to an Arduino.

2. Demonstrate output of a PWM signal from the Arduino with proper RC frequency and

duty cycle.

3. Demonstrate signal compatibility between the PPM sum receiver/Pixhawk and the

Arduino.

4. Demonstrate yaw control loop reaction.

5. Demonstrate Arduino control of the drone.

Page | 40

To accomplish these tasks, extensive research on

the Lidar, Arduino, and Pixhawk components were

conducted. Characterization of the RC receiver‟s

PWM signals was required in order to determine

what the Arduino must produce to match the RC

signal and reduce the chance of signal rejection

from the PPM sum receiver. Finally, three

different batteries of tests were conducted:

 Arduino and Lidar testing – conducted via

Serial port feedback on a computer.

 Arduino PWM and PPM Sum testing –

conducted via Mission Control software feedback to observe input control signals.

 Arduino and Drone control testing – conducted with the propeller-less drone, a movable

wall, Mission Control software feedback, Serial Port feedback, and audible feedback of

the motors.

The results of these tests were overall a success. The following notes for the five objectives of

fall quarter include:

1. Demonstrate multiple Lidar Sensors can operate and provide accurate data when

connected to an Arduino. : Success. Using I2C communication and specific channel

address wires it is possible to operate two Lidar sensors and proves very reliable.

2. Demonstrate output of a PWM signal from the Arduino with proper RC frequency and

duty cycle. : Limited success. The output of the Arduino board can output PWM signals

tuned to RC frequency and duty cycle, however because of the limited resolution of the

Arduino, finer resolution would be better for more precise control.

3. Demonstrate signal compatibility between the PPM sum receiver/Pixhawk and the

Arduino. : Success. The Arduino can produce signals that are compatible and are

recognized by the Pixhawk.

4. Demonstrate yaw control loop reaction. : Success. During physical testing of the

Arduino, Lidar, and drone, the drone exhibited sounds of changing motors when the

movable wall was rotated between normal to the aircraft and angled. This gives

indication that the yaw control loop was reacting to the changes in orientation to the wall.

5. Demonstrate Arduino control of the drone. : Success. The Arduino can exhibit control

over a drone.

The success of these tests show the feasibility of the project, as the hardware was proven at

varying degrees of functionality. Because the next steps in development were proving control

loop operation on a two dimensional vehicle, the first phase of testing helped set up the

foundation for what the following quarter‟s tests would use to function.

Figure 45 - The drone configured for the Arduino

and Drone control testing phase, wiring not yet

installed
Image courtesy of Ryan Sass, Santa Clara University

Page | 41

4.3. Winter Quarter – Demonstration of 2D Operation

The second phase of testing for this project involved demonstrating simulated operation of the

drone to prove successful operation of the hardware. This allowed development of the Arduino

control loops in a more forgiving and controlled environment, in this case operating in just the

two dimensions of control intended. It also facilitated higher factors of safety in the preliminary

stages of the control loop development. This was beneficial as when flight testing occurred, the

basics of the control loop were already proven to be functional. The list of objectives for this

quarter to demonstrate project operation included:

1. Mount the Arduino control loop hardware, including the Pixhawk, on a BOE robot and

demonstrate autonomous vehicle control.

2. Demonstrate incorporation of new PWM board into hardware operation.

3. Demonstrate execution of yaw and pitch control loops operating in unison.

4. Prove control loop repeatability and robustness.

To accomplish these tests, a Board of Education (BOE) robot was used. This vehicle is a three

wheeled, two independent wheel drive rover with a flat top to allow for payload mounting. The

robot can simulate yaw of the drone by operating the two motors in opposition to one another.

When the two drive wheels spin in opposite directions, the vehicle spins just as the drone would

yaw. When the two wheels spin in unison, it simulates the pitch movement by moving forward or

backwards.

BOE bot required heavy modification in

order to contain the electronics of the project,

mount the Lidar Sensors to the robot, mount

the motors in the same orientation, and

establish a long enough umbilical cord to

deliver power. This required special wiring

for the umbilical cord, as well as heavy use of

3D printing to develop specially fitted

mounts. The mounts created included the

Lidar holder, a „stack‟ to house the Arduino

and Pixhawk, and a special motor mount for

one of the motors. These special wheel motor

mounts were created in order to operate both

motors in the same direction to achieve

forward motion. The basic shape and design

of the Lidar mounts carried through the

project‟s development.

Control output had to be slightly altered in

Figure 46 - The testing platform for winter quarter including

the BOE robot and capstone project components integrated
Image courtesy of Ryan Sass, Santa Clara University

Page | 42

the software to achieve proper simulated pitch and yaw commands. Since both commands

required operating the motors either in unison or in opposition, this required control loop outputs

to be specially altered before sending the PWM output signal so that proper movement was

achieved.

The PWM board used for this project was incorporated into this phase of testing in order to

provide finer resolution of output signal change. Confirmation of the resolution of the PWM

board‟s operation was conducted with a digital oscilloscope.

The results of these tests were an overwhelming success. The following notes for the four

objectives of winter quarter include:

1. Mount the Arduino control loop hardware, including the Pixhawk, on a BOE robot and

demonstrate autonomous vehicle control. : Success. All components were mounted, and

all components could successfully work in unison to make the BOE robot operate as

desired.

2. Demonstrate incorporation of new PWM board into hardware operation. : Success. The

new PWM board relieved processing time of the Arduino software as well as provided

much greater resolution when changing PWM signals. It improved resolution by a factor

of about 15.

3. Demonstrate execution of yaw and pitch control loops operating in unison. : Success. The

two control loops, while being gated, both worked very well and control to a set point

within a few inches.

4. Prove control loop repeatability and robustness. : Success. The BOE bot exhibited very

robust and accurate control that was repeatable and fairly robust. The robot could be

turned left or right of the wall, and near or far, in any combination thereof, and the robot

would correct its „yaw‟ and then proceed to move to the deadbanded set point.

These tests proved that the control loop algorithms and hardware could successfully exhibit

control over a vehicle, and that controllability of an aircraft was definitely possible, and that

the Arduino control assembly was ready to be installed and tested on a drone aircraft.

4.4. Spring Quarter – Demonstration of Flight Operation

The final phase of testing was demonstration of flight operation of the Arduino control assembly.

It involved a lot of objectives as this was the first time the aircraft was to be flown under

automated control. The list of objectives for this quarter to demonstrate flight operation included:

1. Mount and equip the aircraft with all components in a secure, but accessible manner for

flight operations, service, and data upload.

2. Develop a safe plan of operation for test flight development.

3. Establish data recording of control loop parameters.

4. Establish Arduino Control of the drone.

Page | 43

5. Demonstrate Arduino control loop control of the aircraft.

6. Demonstrate Arduino signal error rejection.

These objectives will be described in more detail in the following sub sections. This was the file

phases of testing and development. The testing performed here was described in deep detail in

the hopes that future development on this project can benefit from the testing, lessons, and

success achieved here.

4.4.1. Objective 1 - Mount and equip the aircraft with all components in a secure, but

accessible manner for flight operations, service, and data upload.

One of the most visible pieces of equipment on the drone, and the largest mount was for the

Lidar sensors. The Lidar mount went through an initial design iteration with the assistance of a

team of undergraduate students. The alignment and general shape of this mount was established

in this initial phase, but other design choices were ultimately rejected as they lacked ease of

access for service or adequate security.

Initially, the Arduino board was slated to be mounted just beneath the Lidar sensors. However

the amount of wires and the style of wiring gave rise to a high risk for propeller strikes, either by

falling out of their connection with an upside-down mounted Arduino, or by just general spacing

of the wires. This upside-down mounting of the Arduino also proved difficult to remove the

Arduino board for service, so the Arduino board mounting location removed from the Lidar

mount and placed elsewhere with a separate mount.

The Lidar mount also initially had two fins that straddled the top and bottom part of the nose of

the drone; however this proved difficult to mount, so the fit to mount to the top of the aircraft

was strengthened, while the bottom piece of the mount was removed from the design. Also, slots

for the mount were substituted for holes. This allowed for greater simplicity of installation for

the three bolts that hold the mount in place.

The undergraduate team also designed the mount for the PWM board. This design proved very

suitable, as it was stable, easy to install, located well, and did not pose any shorting risk on the

mount it was located.

The Arduino board mount was chosen to sit on the top of the aircraft behind the Lidar and PWM

mounts. The mount was designed in a minimalist style, and had the same push-mount style of

board attachment that the PWM mount had. The mount fits screw holes already existing to hold

the top plate to the aircraft. The wiring for the control loop package was trimmed and secured so

that it would not easily come loose, and did not have enough flex or movement to swing

anywhere near the propellers. The breadboard was attached on an open area of the Lidar mount

where it was easy to access and helped keep the wiring distances between each peripheral as

short as possible.

Page | 44

With the current positions of the Pixhawk and Arduino, it‟s easy to see and access the Arduino

pins, see the Pixhawk state indicator light, as well as attach USB plugs to Arduino and Pixhawk

for data upload. Removal of the Arduino or PWM board is as easy as pulling upwards.

Therefore, achieving the task of mounting and equipping the aircraft with all components in a

secure, but accessible manner for flight operations, service, and data upload is was successful.

4.4.2. Objective 2 - Develop a safe plan of operation for test flight development.

This objective was developed through trial and error, so throughout the course of testing, three

flight incidents occurred. However, a lot of procedural steps can be implemented to avoid these

accidents in the future.

The first test performed on the aircraft was an anchored flight test to test motor operation and

control signal outputs. This was done by strapping the drone to a stand and placing it inside a

secured chamber. Proper control signal response can be confirmed by running the motors and

observing the motor response. In this way it was learned that inverting the pitch command on the

transmitter was necessary. This is also an important time to confirm the proper connection of

each individual motor to the Pixhawk. While it was not known to perform this step, this would

have adverted two of the flight incidents during this phase of testing.

The first two accidents occurred due to incorrect connection of the motors to the Pixhawk. This

lead to an unstable aircraft prior to it ever leaving the ground and resulted in two turnovers of the

aircraft while attempting to lift-off. No amount of user control could have avoided the accident,

Figure 47 - Automated drone anchored flight tests in flight test chamber
Image courtesy of Ryan Sass, Santa Clara University

Page | 45

only confirming proper connection of the motors to the Pixhawk would have averted these

incidents.

Another useful test was the “1-inch flight” tests. A flight “testing pad” was developed to address

this issue with the aircraft flipping over during lift-off. It was a large, heavy piece of plastic with

four anchors that the drone‟s

landing legs could be secured to

with bailing wire. This allowed the

aircraft to fly a few inches off the

ground but not flip over. This

provided safe troubleshooting of

the aircraft when its ability to fly is

uncertain.

Finally, once the drone could fly

successfully, tests of the control

loops were the next steps to

developing the aircraft. These tests

were performed in incremental

steps to ensure that each portion of

the control loops in the software

was functioning properly and any

issues could be resolved, before

the more complicated aspects of the code were tested. This meant performing the following types

of flight tests in the following order:

1. Full manual flight test to establish proper manual control of the aircraft and that all drone

components operate successfully under actual flight conditions and all control loop

components are affixed securely to the vehicle.

2. Manual flight test of DPDT relay operation, with full control in either switch positions of

the relay. Red indicator light is attached to the relay to indicate the switch. Manual

control signals for pitch and yaw are connected to each corresponding NC and NO

contacts on the relay to maintain full control and allow operation of the DPDT relay and

the RC activated switch in a flight environment.

3. Manual flight test of DPDT relay operation with simulated automation control. Manual

pitch and yaw control signals go only to their respective NC contacts on the relay. No

input control signals go to the NO contacts. Establish manual flight control of the aircraft

then switch the DPDT relay and confirm loss of pitch and yaw control. Also confirm

successful relay operation.

4. Arduino neutral flight test. Establish manual flight, and then switch to Arduino control

output signals sending neutral pitch and yaw signals. Confirm neutral PWM signals from

Arduino behave as expected.

Figure 48 - Drone during "1-inch flight" tests, attempting to tip over.

Zoomed inset on the left shows a close-up of drone.
Image courtesy of Ryan Sass, Santa Clara University

Page | 46

5. Arduino Yaw Only flight test. Establish manual flight with a slight yaw error and allow

Arduino yaw control. Establishes Arduino yaw behavior and control for tuning. Full

manual pitch control authority (similar to test 2) is maintained for safety.

6. Arduino Pitch Only flight test. Establish manual flight with a distance from the set point

and allow Arduino pitch control. Establishes Arduino pitch behavior and control for

tuning without any interruption from the yaw movement. Full manual yaw control

authority (similar to test 2) is maintained for safety.

7. Arduino Pitch and Yaw Control. Establish manual flight with distance and/or yaw error

and allow for Arduino control. This established the full capabilities of this project.

For many of the type 5 – 7 flight tests, „dry‟ flight tests were conducted. These dry flight tests

were conducted by placing the drone on a movable cart instead of flying the drone. From there,

observation of signal input to the Pixhawk from the Arduino by way of the Mission Controller

software, as well as values internal to the Arduino that were specifically coded to output for the

dry tests were displayed using serial output on a computer. From here, the movable cart could be

moved in relation to the wall and the corresponding displayed output commands. This allowed

some preliminary signal characterization and confirmation of controller behavior to an actual

flight to reduce the unexpected errors during a live flight.

While the final flight incident occurred during a type 7 test flight, the plan for operation for test

flight development was successful enough to avoid any other incidents by flushing out errors far

before they became issues during flight. The unfortunate mishap occurred, ironically, because

the failsafe of switching to LAND mode was not utilized and an attempt to recover the aircraft

under manual control during

an unexpected flight

circumstance. Had this

failsafe been utilized instead

of opting for manual control,

the aircraft may have either

avoided or had a less severe

incident.

These operations, including

failsafes such as the land

feature for manual control

intervention, kept

development of the project

advancing and a good rate and

attributed to the project‟s

success.

Figure 49 - A „dry‟ flight test, with computer connected to observe input and

output values in real time
Image courtesy of Ryan Sass, Santa Clara University

Page | 47

4.4.3. Objective 3 - Establish data recording of control loop parameters.

This objective was accomplished later in the development of the project, after the control loops

were almost fully developed. This actually proved beneficial, as a comparison of flight control

performance with and without data recording could be compared and the difference was

determined to be negligible.

The development of this data recording was done in conjunction with an undergraduate student.

While the overall code flow was a collaborative effort, the undergraduate student wrote the code

that accomplished this task. A lot of dry testing was performed to confirm this data recording,

prior to making live flights with data recording. The results of these tests provide invaluable

information about the drone‟s performance that the Pixhawk cannot record. The resolution of this

data is in time steps of 200ms, which is be more than substantial at the moment for the speed that

this drone flies controlling around its set point. This ability to record data successfully at a fast

rate in comparison to the drone itself proved this objective was met successfully.

4.4.4. Objective 4 - Establish Arduino control loop control of the aircraft.

This objective was completed during type 5 – 7 flight tests as outlined in Section 4.4.2. The

testing of the Arduino‟s capabilities for drone control prior to these tests was unknown, so there

was an element of “try it, see, and retune”. The saving grace to establishing the Arduino control

was the ability to switch back to manual mode in the event of unexpected control behavior. This

objective was thoroughly demonstrated and successful by the end of this project.

4.4.5. Objective 5 - Demonstrate Arduino control loop control of the aircraft.

This objective, while being performed during an array of type 7 test flights, exhibited different

behavior from the similar simulated tests performed during the winter quarter by the BOE robot.

Unlike the stationary robot, the drone has more drift in the pitch movement. Also, the aircraft

could move the sensor into positions that required much more error rejection than was first

thought to be required during winter tests.

During the type 7 flight tests, the original control loop design intent was to perform yaw control

until yaw error fell within an acceptable yaw deadband zone, then stop yaw control by issuing a

neutral yaw command and execute pitch control until either located within the proper distance

deadband zone or the aircraft turns out of the yaw deadband zone. This proved problematic

during actual flight tests, though, as the drone would sometimes find itself just outside of the yaw

deadband zone while drifting (but not controlling) to or from the set point, and could not exhibit

pitch control to correct.

To fix this issue (aside from some control loop tuning), the control loop design was changed to

perform both yaw and pitch control simultaneously, unless the drone had large yaw error. This

was decided because in that given situation it would be unknown if pitch control at these extreme

angles would put the aircraft in an unsafe location to continue pitch control as the drone is

Page | 48

moving (i.e. flying the drone

diagonally towards the wall

and into an unsafe area as it

corrects yaw and pitch at the

same time). Since the

current suite of sensors can‟t

identify the drone‟s path, it

was decided to it was

decided that the drone will

only attempt to correct yaw

at larger error angles until it

is once again reduced yaw

error to resume pitch control.

The data results of the control loops are located in Section 4.5. The data is a clear depiction of

proportional and proportional/derivative control loops in operation. Both control loops reach

their set points and maintain their error within the deadband achieving good stability. Therefore,

this objective was successfully demonstrated.

4.4.6. Objective 6 - Demonstrate Arduino signal error rejection

This objective was added after the major flight incident that caused the loss of all 8 flight motors

and several propellers. Because the aircraft can drift into areas where odd sensor readings can

occur, it is important to include this type of error rejection so that the drone does not try and fly

out of control. This is part of the reason that caused the crash. It also demonstrated that it was

important to have indicator lights to show when the aircraft is within acceptable windows of

operation.

Input error rejection was incorporated into the software of the Arduino control loops. This error

rejection included:

1. Aircraft distance to the wall is less than 250 cm (Too close)

2. Aircraft distance to the wall is greater than 1250 cm (Too far away)

3. Any sensor returning a negative value (Usually not reading off the wall, and not getting

proper measurements from the sensor)

4. Calculated yaw angle is greater than 40° to the left or right. (Too mis-aligned from a wall,

pitch control would not be a safe mode of operation because of the lack of clear space to

move laterally).

These modes of flight would stop the execution of the pitch control loop and set the pitch output

control to a neutral value, allowing either the user to more successfully regain control of the

aircraft in manual flight mode, or allow the aircraft to resume yaw control until the yaw error has

been reduced to allow for more successful execution of pitch control.

Figure 50 - Drone during flight test
Image courtesy of Ryan Sass, Santa Clara University

Page | 49

4.5. Flight Position and Control Loop Performance Data

The graph in Figure 51 shows the aircraft distance from the set point in blue and the yaw error

from the set point in red. They are all graphed with respect to time and are normalized values.

The normalized distance values are displayed on the left vertical axis and the normalized yaw

angle values are displayed on the right vertical axis. The deadband for the yaw limit is also

depicted as the horizontal lines in orange, as this control deadband was large enough to be seen

accurately. The set point for pitch is the horizontal line shown in blue, and for yaw the horizontal

bar shown in red.

 The graph in Figure 52 shows the pitch performance, in blue, with the normalized pitch control

output value, in red, overlaid. The left vertical axis displays the values for normalized distance

from the set point. The right vertical axis displays the normalized value for control response as

added to the neutral output command. The pitch set point is the horizontal bar shown in blue.

Figure 51 - Performance Graph Showing Aircraft Distance and Yaw Offset from Respective Set Points

Page | 50

Figure 53 – Performance Graph Comparing Aircraft Yaw Angle Offset from Set Point and Yaw Control Signal Output
Image courtesy of Ryan Sass, Santa Clara University

Figure 52 – Performance Graph Comparing Aircraft Distance Offset from Set Point and Pitch Control Signal Output
Image courtesy of Ryan Sass, Santa Clara University

Page | 51

The graph in Figure 52 shows the yaw performance, in red, with the normalized yaw control

output value, in blue, overlaid. The left vertical axis displays the values for normalized distance

from the set point. The right vertical axis displays the normalized value for control response as

added to the neutral output command. The yaw angle input deadband bars are also shown as

horizontal line shown in orange, and the yaw set point is the horizontal line shown in red.

4.6. Overall Test Results

The completed result of this project and the battery of testing is the successful demonstration of a

drone that can automate pitch and yaw control via an Arduino with repeated, stable, and reliable

results. The aircraft can record its data of performance and can exhibit “plane lock” flight as

intended, moving up, down, left and right, while maintaining a given distance from the wall.

From the test results, it can be seen that the current resolution of distance control performance

from a flat wall is within ±2 feet, maintaining yaw control within ±3° from normal. The drone

also has built in signal error rejection for safer operation, and the ability to return to manual

flight control or automated landing for further margins of safety.

To review and comment on the Project Performance Objectives listed in Section 1.6:

 Demonstrate Aircraft Control with the use of yaw and pitch control loops. : Success. The

aircraft can successfully control the pitch and yaw axes using the Arduino control

assembly developed for this project.

 Demonstrate Yaw Control within ± 20° from normal. : Success. From the test result data,

yaw control was maintained within ±3° from normal.

 Demonstrate Pitch Control within ± 3 ft. of a given set point. : Success. From the test

result data, pitch control was maintained within ±2 feet of a given set point.

Page | 52

Figure 54 - Capstone Project Drone in Flight
Image courtesy of Ryan Cooper, Santa Clara University

5. Results, Conclusions, and Future Work Suggestions

5.1. Results of Development

The results of the development of this project are very successful in demonstrating the ability for

a microprocessor to take control of an aircraft and exhibit closed loop control. With the

exception of a few minor and one major flight incidents, the development of this project went

smoothly from paper drawings and thoughts to an automated flying aircraft in three quarters of

development. Each successive quarter resulted in successful advancement that continued the

project forward in a relatively safe manner to prove successful operability.

The end result of the project development is a drone capable of automated simultaneous yaw and

pitch control, resulting in “plane lock” with a wall. With the added error rejection and failsafes

built in, the drone is a very prolific demonstrator of not only the capabilities of automated drone

flight, but the potential in the level of control able to be exhibited over a drone. This was the first

iteration of feedback control with a drone, and the resolution was ±2 feet from a set point, a little

shy of twice the size of the craft itself, and ±3° in yaw control. With better, more sensitive

sensors and PWM generators, the level, agility, and resolution of control could be vastly

Page | 53

improved. The end result of this project certainly opens the door to further development in many

different areas.

5.2. Conclusions of Operability

From these results, there are a few conclusions we can draw from its performance. It is

reasonable to conclude that complete flight automation with an Arduino - with the addition of

more sensors - is possible. It is also reasonable to conclude that the Arduino can execute multiple

control loops and multiple output signals at an acceptable state of control and resolution. This

would lead to consideration that flying a drone from a slanted flat surface, such as a roof or

flying at a given yaw angle from a wall is very possible to implement.

It can also be concluded that with some precautions, planning, and safety measures, that

automated object recognition and avoidance control is possible, further giving reason to continue

development of flying automated drones indoors or outdoors without GPS.

5.3. Suggestions for Future Work and Development

While this capstone project unfortunately must come to an end, it does open the door to future

development, either for this project or similar projects wanting to utilize similar styles of control.

Below are some of the suggestions for future development of automated drones.

5.3.1. Suggested Hardware Improvements

While the hardware used for this project was substantial to achieve project success and produce

adequate results, there are some comments regarding some of the hardware.

The Arduino Mega board felt like it was the correct board to use for the maturity of this project,

however, smaller and/or faster boards might be worth considering. The same capabilities may be

accomplished with an Arduino Micro or Nano. Or, switching to an Intel Edison board may be a

better choice for finer control of the aircraft.

The PWM board vastly improved the abysmal resolution performance the Arduino itself

attempted to do - by a factor of 15 - however even the resolution of the PWM board was almost

not fine enough. Because the duty cycle of the RC signal ranges from 5% to 9% to indicate 0%

to 100% input, the full resolution of the PWM board is not used. Add to this the limiting of each

control signal in software, and this reduces the usable resolution by almost another 30%.

Therefore, much finer resolution of output signals may provide more accurate control, especially

when the aircraft is near the set point and finer control input is required.

The Lidar sensor package had an offset of 7.5°; however this value should be tooled with to find

the most optimal offset. Also, while the sensors themselves proved very accurate and fast,

perhaps a better way of sensing a wall might be considered that can incorporate more

information regarding the environment the drone is in.

Page | 54

Finally, powering the Arduino was performed with a 9V battery; however there is a plug for

power directly from the aircraft battery that was never implemented to power the Arduino. While

it was never determined if this power was regulated, it did not prove reliable power when a direct

connection was attempted. Also, because the power module that connects to the aircraft battery

that powers the Pixhawk only outputs 5V; this was not deemed a suitable choice for the Arduino.

Developing a regulated power source from the aircraft‟s battery to power the Arduino and

peripherals would be beneficial, as dying 9V batteries were a common problem, and resulted in a

few odd behaviors during test flights.

5.3.2. Improved Response Time or Narrowing the Deadband

Improving the response time of the aircraft to reach the set point and improve control

performance will require some more serious hardware to be able to more carefully tune

parameters, as well as more accurate ways to read data in order to characterize the performance.

However, judging by the overall responsiveness of the aircraft, this ability to move faster to the

set point should be possible either by further tuning the existing hardware or improving the

hardware as well as retuning.

To narrow the deadband would be to improve the ±2 feet of slop in the position hold. To be

clear, the deadband of the implemented control loop was very narrow, but the performance

resulted in a deadband of ±2 feet. Again, finer resolution of the control signals, as well as

refined, or possibly different control characteristics when close to the set point might improve

the ability for the aircraft to maintain control.

5.3.3. Altitude and Lateral Control

The next natural step for development of the capabilities of the current hardware of this drone

would be to include roll and throttle control. The Pixhawk has an ALT HOLD mode; however

this mode was never tested due to odd aircraft behavior of this mode during testing. While

tethered to an anchor, it appeared the drone attempted to „fly off‟, revving the motors at

alarmingly high speeds. After an attempt to demonstrate safe operation while flying on a 5‟ rope

tether were unsuccessful, due to a perceived lack of safety in the event of a fly off (it appeared

the drone would hit the end of the tether and proceed to swing along the tensioned tether into the

ground during light simulations of a fly off), the decision was made to not perform any indoor

test, tethered or untethered, of altitude hold. Proper testing of this mode should be performed

outside where there is no ceiling to contend with.

During most of testing, roll correction was a constant issue, and the drone would drift from side

to side. Another flat wall combined with a roll control loop would easily solve this drift, as the

added loop‟s implementation would be nearly identical to the control loop implemented for pitch

control.

It would be great to see automation of all 4 axes of flight, allowing complete “hands off” of the

controls.

Page | 55

5.3.4. Adjustable set points

The RC receiver has a wonderful infinitely adjustable auxiliary dial on it, which appeared to be a

great way to adjust the set point of the distance from the wall while in flight. Because this project

was focused on implementing operational success of the aircraft itself, there was not enough time

to develop a method to implement receiving this signal for this project. It would be great to see

the aircraft reach a set point and then re-correct to a new set point while in mid-flight.

5.3.5. Pattern Following in “Plane Lock”

Now that the drone has exhibited “plane lock” ability, perhaps programming the altitude and

lateral control to allow the drone to fly in an up-down / left-right style pattern, in order to

demonstrate automation for things like wall scanning, surveying, or perhaps photography.

5.3.6. Slanted Plane Control

Another great development would be to test the control of the aircraft exhibiting “plane lock”

with respect to a slanted wall, either a roof style plane, or the drone controlling pitch control

while holding a yaw angle from the normal to the wall. A roof-style plane would require

implementing simultaneous throttle and pitch control (as well as yaw control still), and a slanted

wall would require roll and pitch control (as well as yaw control still). Either would require a

combination of mixing signals to achieve performance.

5.3.7. +6 Sensor Alignment Control

This would be an expansion suggested in Section 5.3.2, by adding sensors in both directions for

roll, pitch, and altitude. Perhaps allowing the drone to shift between controlling distance from

one side vs. the other (like controlling distance on its left then right side as it travels from one

area to another), would allow a drone to start safely navigating down hallways and start to

achieve successful object avoidance by keeping away from the closest object.

5.3.8. Multi Drone Formation

Set up two drones to maintain distance lock from one another while performing flight

maneuvers. This would require much more sophisticated sensing techniques, as well as multiple

people for development.

Page | 56

References

1. X8+ Operation Manual – https://3dr.com/wp-content/uploads/2015/04/X8-Operation-

Manual-vC.pdf

2. Pixhawk Autopilot Information - https://pixhawk.org/modules/pixhawk

3. Lidar Information - http://pulsedlight3d.com/products/lidar-lite-v2-blue-label.html

4. Pixhawk Reference - http://ardupilot.org/copter/docs/assembly-instructions.html#

5. Adafruit 16-Channel Servo Driver Library Reference - https://learn.adafruit.com/16-

channel-pwm-servo-driver/library-reference

https://pixhawk.org/modules/pixhawk
http://pulsedlight3d.com/products/lidar-lite-v2-blue-label.html
http://ardupilot.org/copter/docs/assembly-instructions.html

Page | 57

Appendix

Project Flight Procedures

When operating the drone in automated flight mode, it is suggested that the following general

procedures are followed for safe operation of not only the drone, but the test area. The

procedures include:

1. Preflight

1.1. Observe the flight area. Ensure there is enough area and height in which you want to fly,

and that user ability will allow for flight error.

1.2. Determine “no go” or “mandatory manual control and/or land” zones, this will help to

know when the aircraft still has error margins but must action must be immediately

taken in order to avoid an accident.

1.3. Ensure aircraft is properly calibrated, motors are connected properly and motors are

connected to the correct motor connection. Ensure all components on the aircraft are

secure for flight and that the propellers can spin freely.

1.4. Ensure RC Transmitter is properly calibrated, and signals correspond to proper flight

controls. Ensure all auxiliary signals behave as expected prior to flight.

1.5. Check battery voltage for aircraft and Arduino. Ensure sufficient voltage, and if using a

multi-cell battery, cells are balanced.

1.6. Have a video recorder set up. In the event of a flight incident, video review can assist in

helping to understand the chain of events that led to an incident.

1.7. Consider personal safety equipment. Foot and eye protection should be considered.

1.8. Consider a neck tether for the RC Transmitter, it will allow for better input control by

not having to support the transmitter weight.

2. Starting and Liftoff.

2.1. Have on proper safety equipment for flight, including eye and foot protection

2.2. Start video recording

2.3. Plug in Battery

2.4. Wait for Pixhawk to initialize. A tone and a blue or green blinking light means the

Pixhawk is ready.

2.5. Ensure throttle is in the low position and all switches are in their proper place, and then

power the RC transmitter.

2.6. Ensure the RC transmitter is commanding the Pixhawk to be in a safe flight mode, such

as LAND.

2.7. Ensure switch for SD card recording is in the “LOG” position.

2.8. Switch power to the Arduino ON

Page | 58

2.9. Confirm operation of the automation/manual control switch by toggling. Feedback will

be a red light illuminating in automation mode, and extinguishing for manual mode.

Leave in manual mode.

2.10. Press and hold red flashing safety switch until it turns stable red. The ESC‟s will

make the motors briefly jump, and a tone can be heard. Motors now have power, but are

not yet armed or should be spinning.

2.11. Stand back a good distance from the aircraft. Standing directly behind the aircraft

is recommended.

2.12. Switch the flight mode on the RC transmitter to a flyable mode, such as

STABALIZE.

2.13. Hold the left control stick (throttle and yaw) in the lower right position. Once tone

is heard, release yaw control to neutral. Copter is now armed and will fly upon

advancement of the throttle.

2.14. To takeoff, SLOWLY advance throttle until the drone comes off the ground.

2.15. Upon liftoff, back off the throttle a little to reduce climb rate.

2.16. Proceed to flying!

3. Manual Flight

3.1. In manual flight, roll, pitch, yaw, and throttle are all under user control.

3.2. Any flight adjustment to one axis will affect the aircraft in such a way that another input

is usually needed. For instance, if pitching forward, more throttle is required to maintain

the same altitude or the drone will pitch forward and lose altitude.

3.3. The switch for manual flight was defaulted to be in a position where if the RC

transmitter is grabbed or bumped, it will push the switch into the manual position.

4. Preparing for Automated Flight

4.1. To prepare for automated flight, fly the drone to an area where the drone‟s Lidar sensors

appear to still be observing the wall. It is suggested to not exceed 35° – 50° of yaw from

the wall. Remember, the further away the drone is, the more wall required for more

extreme angles of yaw.

4.2. Ensure the aircraft is relatively stable before switching to automated flight.

4.3. Flying less than 8 feet or more than 40 feet from a wall is not recommended for

automatic flight. Ensure the aircraft is within this tolerance.

4.4. When ready for automated flight, switch the automated / manual control switch outward

to allow manual flight.

5. Automated Flight

5.1. Once in manual flight, control authority over pitch and roll will not be exhibited by the

transmitter. The Arduino has full control of these flight axes.

5.2. Allow the drone to drift a little. It will drift under automated control, especially the

further away it is. Large amounts of yaw or pitch are a sign of incorrect operation. In this

case, consider returning back to manual control by pulling the control switch back in to

manual mode.

Page | 59

5.3. Remember that roll and throttle control are still required for safe flight. This means

observing the aircraft at all times during this flight mode as well. While pitch and yaw

movement may not necessarily require corresponding throttle or pitch input, consider

focusing on maintaining these two axis of flight in a controlled, slow, and stable manner.

5.4. When ready to return to manual mode, pull the control switch back in to manual mode.

Pitch and yaw control authority will be restored to the RC transmitter.

6. Landing

6.1. While landing the drone can be performed in STABALIZE mode, the simplest method is

suggested to switch to LAND mode.

6.2. Find a suitable landing area. Hopefully the area of flight is all suitable for landing on.

6.3. When in position, switch to land mode and maintain directional control.

6.4. Maintain direction control through touchdown of the aircraft.

6.5. Reduce the throttle to its minimum position.

6.6. For advanced fliers, consider landing on a padded area for reduction in shock and

possible landing damage.

7. Post Landing and Shutdown

7.1. Hold the left control stick in the lower left position to disarm the aircraft. A tone can be

heard when held. Land mode will automatically disarm the aircraft and play the tone.

7.2. Ensure the aircraft is in LAND mode or disarmed before approaching the aircraft and

that the throttle position is in the full down position.

7.3. Press and hold the solid red light button until it starts blinking, this indicates the ESC‟s

no longer have power routed to them and it is safe to be near the propellers.

7.4. Switch the SD card switch to OFF and wait 1-2 seconds. It is suggested to repeat this

again for thoroughness.

7.5. Switch off the Arduino power.

7.6. Disconnect the battery

7.7. Power off the RC transmitter

8. Emergencies

8.1. In the event of an unsuitable flight condition, the best options are to switch to manual

control, and switch to LAND mode. When in doubt, LAND!

8.2. If manual control disorientation occurs, switch to LAND mode! Even if it results in a

rough landing, it is better than a failed attempt to save the drone and crash it hard.

8.3. Ensure that a battery failsafe is in place and that the accelerometers exhibit proper

calibration prior to liftoff. Never attempt to fly if the accelerometers exhibit poor

calibration.

Page | 60

Arduino Software Code

MECH_290_master_code_v2.6_FLIGHT_PITCH_AND_YAW.ino

#include <math.h>

#include <Wire.h>

#include <LIDARLite.h>

#include <Adafruit_PWMServoDriver.h>

/*

 * Ryan Sass

 * Santa Clara University

 * rsass@scu.edu or ryan.sass@gmail.com

 *

 * Date Published: 5/16/2016

 * Version Number: 2.6

 * File: MECH_290_master_code_v2.6_FLIGHT_PITCH_AND_YAW.ino

 *

 * Full Control Command Code

 *

 * Intended to be run on Arduino MEGA 2560 r3

 *

 *

 ****** I/O PIN ASSIGNMENTS ******

 *

 * ~~~ Input ~~~

 * A0 - LIDAR Sensor Left

 * A1 - LIDAR Sensor Right

 * A4 - Receiver Roll Signal

 * A5 - Receiver Pitch Signal

 * A6 - Receiver Yaw Signal

 * A7 - Receiver Gear Signal

 *

 * ~~~ Output ~~~

 * 03 - [PWM] Roll Signaling

 * 06 - [PWM] Pitch Signaling

 * 10 - [PWM] Yaw Signaling

 * 45 - Control Lockout Signal (tied to Gear Signal)

 *

 */

//VARIABLES TO BE INITIALIZED

/*

roll - roll output pin value

pitch - pitch output pin value

yaw - yaw output pin value

CLS - control lockout signal output pin value

h_val_10 - value between 0 - 1024 that delineates what is 'HIGH'

ctrl_enable - CONTROL ENABLE - allows yaw control to occur. It is a signal

input.

lidar_l - LIDAR SIGNAL LEFT - Signal input of the left LIDAR unit.

lidar_r - LIDAR SIGNAL RIGHT - Signal input of the right LIDAR unit.

lidar_diff - LIDAR DIFFERENCE - subtraction between left and right LIDAR

units.

Page | 61

lidar_yaw_db - LIDAR YAW DEADBAND - The deadband window for LIDAR difference

(lidar_diff) that sets to 0.

yaw_error - YAW ERROR - The difference between LIDAR difference (lidar_diff)

value and yaw setpoint (yaw_sp).

yaw_sp - YAW SET POINT - hard coded value of the yaw set point, the

difference between the two LIDAR units.

yaw_p - YAW PROPORTIONAL GAIN - the proportioanl gain for the yaw control

yaw_PWM - YAW PWM SIGNAL - the converted PWM output signal

*/

//variable assignments

bool success1,success2;

//int roll = 3;

int pitch = 2;

int yaw = 4;

int CLS = 45;

int h_val_10 = 612;

int lidar_yaw_db_o = 3;

int yaw_only_db = 40;

int yaw_sp = 0;

int32_t pwm_freq = 45;

int sig_avg = 25;

int yawpitch = 0; //yaw = 0, pitch = 1

int yaw_PWM_neutral = 278;

int lidar_pitch_db = 1;

int pitch_sp = 670;

int pitch_PWM_neutral = 278;

int pitch_trim = 11;

int pitch_error = 0;

int pitch_temp = 0;

int

ctrl_enable,lidar_l,lidar_r,lidar_diff,yaw_error,yaw_PWM,x,pitch_ave,pitch_PW

M,output1,pitch_error_old,pitch_delta,lidar_yaw_db;

float db_grow;

float angle,tx,ty,tz;

float pitch_P = 1.0;

float yaw_P = 1.0;

//float pitch_P = 10.5;

//float yaw_P = 11.5;

int sensorPins[] = {2,3}; // Array of pins connected to the sensor Power

Enable lines

unsigned char addresses[] = {0x66,0x68};

LIDARLite myLidarLite;

Adafruit_PWMServoDriver pwm1 = Adafruit_PWMServoDriver();

void setup() {

 // initialize serial communication at 9600 bits per second:

// Serial.begin(9600);

 //Turn pins on

Page | 62

 pinMode(31,OUTPUT);

 digitalWrite(31,HIGH);

 //initializing Lidar signals

 myLidarLite.begin();

 myLidarLite.changeAddressMultiPwrEn(2,sensorPins,addresses,false);

 //start PWM board

 pwm1.begin();

 pwm1.setPWMFreq(48);

 //pinout assignments

 pinMode(CLS,OUTPUT);

 ctrl_enable = 1;

 lidar_yaw_db = lidar_yaw_db_o;

 pwmneutral();

 attachInterrupt(digitalPinToInterrupt(18),stopDataLogging,RISING);

 pinMode(18, INPUT);

 initializeDataLogger();

}

/***START OF MAIN

CODE***/

void loop() {

 //process LIDAR sensors

 String s(millis());

 s += " ";

 logData(s);

 lidarprocess();

 yaw_control();//yaw vs pitch control

 //Serial.print("Yaw Pitch \t");

 //Serial.println(yawpitch);

 if(yawpitch == 1) pitch_control();

 //set PWM values to controller

 pwmset();

 logData('\n');

 //print any serial outputs for debugging

 //printoutput();

}

/***END OF MAIN

CODE***/

void enab_sig_proc(){

 ctrl_enable = analogRead(A7);

 //character gear signal to equivalent boolean

 if(ctrl_enable >= h_val_10) {

 //enable signal - enable TRUE

 ctrl_enable = HIGH;

 } else {

 //disable signal - enable FALSE

 ctrl_enable = LOW;

 }

 //signal yaw command signal relay to connect

 digitalWrite(CLS,ctrl_enable);

Page | 63

}

void lidarprocess(){

 //LIDAR signal input & averaging

 x = 0; lidar_r = 0; lidar_l = 0;

 while(x < sig_avg){

 lidar_r += myLidarLite.distance(true,true,0x66);

 lidar_l += myLidarLite.distance(true,true,0x68);

 x++;

 delay(2);

 }

 lidar_r /= x;

 lidar_l /= x;

 logFloat(lidar_r, " lidar_r: ");

 logFloat(lidar_l, " lidar_l: ");

 yawcheck();

 //LIDAR signaling diferencing

 pitch_ave = (lidar_l + lidar_r)/2;

 if(yawpitch != -1){

 anglecalc();

 } else {

 angle = 0;

 }

 db_grow = pitch_sp - pitch_ave;

 db_grow /= pitch_sp;

}

void yawcheck(){

 if((lidar_l > 0) && (lidar_r > 0)){

 if((pitch_ave > 1250) || (pitch_ave < 250)){

 yawpitch = 0;

 digitalWrite(31,HIGH);

 } else {

 if(abs(angle) <= yaw_only_db) {

 yawpitch = 1;

 digitalWrite(31,LOW);

 } else {

 yawpitch = 0;

 digitalWrite(31,HIGH);

 }

 }

 } else {

 yawpitch = -1;

 digitalWrite(31,HIGH);

 }

}

void yaw_control(){

 //set point signal conditioning

 if(lidar_l > lidar_r){

 yaw_error = angle - yaw_sp;

 } else {

 yaw_error = yaw_sp - angle;

Page | 64

 }

 if(abs(yaw_error) <= lidar_yaw_db) yaw_error = 0;

 //yaw PWM signal conditioning

// yaw_error = (yaw_error > 45 || yaw_error < -45) ?

(abs(yaw_error)/yaw_error)*45 : yaw_error;

 if(yaw_error > 45) yaw_error = 45;

 if(yaw_error < -45) yaw_error = -45;

 yaw_error /= yaw_P;

 yaw_PWM = yaw_error + yaw_PWM_neutral;

 logFloat(yaw_PWM, " yaw_PWM: ");

 if(yawpitch != 1) pitch_PWM = pitch_trim + pitch_PWM_neutral;

}

void pitch_control(){

 pitch_error_old = pitch_temp;

 pitch_error = pitch_sp - pitch_ave;

 pitch_temp = pitch_error;

 pitch_error /= 10;

 //signal difference deadbanding

 if(abs(pitch_error) <= lidar_pitch_db) pitch_error = 0;

 //proportional gain

 pitch_error *= pitch_P;

 //yaw PWM signal conditioning

 if(pitch_error > 40) pitch_error = 40;

 if(pitch_error < -40) pitch_error = -40;

 pitch_error /= 2.2;

 pitch_delta = pitch_temp - pitch_error_old;

 pitch_delta *= (1/3.0);

 if(pitch_delta > 30) pitch_delta = 30;

 if(pitch_delta < -30) pitch_delta = -30;

 if(abs(pitch_delta) < 1) pitch_delta = 0;

 pitch_PWM = pitch_error + pitch_trim + pitch_delta + pitch_PWM_neutral;

 if(pitch_PWM > pitch_trim + pitch_PWM_neutral + 15) pitch_PWM =

pitch_trim + 15 + pitch_PWM_neutral;

 if(pitch_PWM < pitch_trim + pitch_PWM_neutral - 20) pitch_PWM =

pitch_trim - 20 + pitch_PWM_neutral;

 logFloat(pitch_PWM, " pitch_PWM: ");

}

void anglecalc(){

 if(lidar_l < lidar_r){

 tx = pitch_ave - lidar_l;

 }else{

 tx = pitch_ave - lidar_r;

 }

 angle = lidar_l;

 tz = lidar_r;

 ty = (sqrt((angle * angle) + (tz * tz) - (2 * angle * tz * 0.9848)) * 0.5

);

 angle = ((ty * ty) - (tx * tx));

 if(angle < 0.05) angle = 0;

Page | 65

 tz = sqrt(angle);

 if((tx == 0) || (ty == 0)){

 angle = 0;

 } else {

 angle = ((tx*tx) + (ty*ty) - (tz*tz)) / (2 * tx * ty);

 }

 angle = (90 - (180 / 3.14159) * acos(angle));

}

void printoutput(){

 //printing output to monitor

 Serial.print("\n\n***** START ****** \n\n\n");

 Serial.print("\n Angle \t");

 Serial.print(angle);

 Serial.print("\n Pitch Ave \t");

 Serial.println(pitch_ave);

 Serial.print("\n");

 Serial.print("\n LIDAR L \t");

 Serial.print(lidar_l);

 Serial.print("\n LIDAR R \t");

 Serial.print(lidar_r);

 Serial.print("\n");

 Serial.print("\n Mode \t");

 if(yawpitch == 0){

 Serial.print("YAW");

 }else{

 if(yawpitch == -1){

 Serial.print("BAD SIGNAL");

 }else{

 Serial.print("YAW & PITCH");

 }

 }

 Serial.print("\n Pitch PWM signal \t");

 Serial.print(pitch_PWM);

 Serial.print("\n Yaw PWM signal \t");

 Serial.print(yaw_PWM);

 Serial.print("\n");

 output1 = pitch_PWM;

 if(output1 == pitch_PWM_neutral + pitch_trim){

 Serial.print("\nNEUTRAL ");

 }else{

 if(output1 > pitch_PWM_neutral + pitch_trim){

 Serial.print("\nBACKWARD ");

 } else {

 Serial.print("\nFORWARD ");

 }

 }

 Serial.print(output1);

 Serial.print("\n\n***** BREAK****** \n\n\n");

 delay(1000);

}

void pwmset(){

 pwm1.setPWM(yaw, 0, yaw_PWM);

 delay(1);

Page | 66

 pwm1.setPWM(pitch, 0, pitch_PWM);

}

void pwmneutral(){

 pwm1.setPWM(0, 0, yaw_PWM_neutral);

 pwm1.setPWM(1, 0, yaw_PWM_neutral);

 //pwm1.setPWM(2, 0, yaw_PWM_neutral);

 pwm1.setPWM(3, 0, yaw_PWM_neutral);

 //pwm1.setPWM(4, 0, yaw_PWM_neutral);

 pwm1.setPWM(5, 0, yaw_PWM_neutral);

 pwm1.setPWM(6, 0, yaw_PWM_neutral);

 pwm1.setPWM(7, 0, yaw_PWM_neutral);

 pwm1.setPWM(8, 0, yaw_PWM_neutral);

 }

LidarDataLogger.ino

#include <SPI.h>

#include <SD.h>

/*

 * Ryan Cooper

 * Santa Clara University

 *

 * Date Published: 5/15/2016

 * Version Number: 2.6

 * File: LidarDataLogger.ino

 *

 * Intended to be run on Arduino MEGA 2560 r3

 */

// change this to match your SD shield or module;

// Arduino Ethernet shield: pin 4

// Adafruit SD shields and modules: pin 10

// Sparkfun SD shield: pin 8

const int chipSelect = 53;

File dataFile;

void initializeDataLogger() {

// Serial.print("Initializing SD card...");

 if (!SD.begin(chipSelect)) {

// Serial.println("Card failed, or not present");

 return;

 }

// Serial.println("card initialized.");

 int i = 0;

 String file(i);

 while(SD.exists(file)) {

 String temp(++i);

 file = temp;

 }

// Serial.println(file);

Page | 67

 dataFile = SD.open(file, FILE_WRITE);

}

bool logData(String data) {

 if (dataFile) {

 dataFile.print(data);

// Serial.println(data);

 return true;

 } else {

// Serial.println("error during data logging");

 return false;

 }

}

void logFloat(float f, String descriptor) {

 char c[10];

 dtostrf(f, 9, 4, c);

 String temp(c);

 descriptor += temp;

// Serial.println(descriptor);

 logData(descriptor);

}

bool logData(char data) {

 if (dataFile) {

 dataFile.print(data);

// Serial.println(data);

 return true;

 } else {

// Serial.println("error during data logging");

 return false;

 }

}

void stopDataLogging() {

 if (dataFile) {

// Serial.println("done logging");

 dataFile.close();

 } else {

// Serial.println("Failed to log data");

 return false;

 }

}

