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ABSTRACT 

Automated control of UAV aircraft reduces pilot workload and increases capability for payload 

operation. However, most commercially available UAV aircraft do not possess automated 

control relative to other objects, just absolute position control of the aircraft‟s location. This 

ability to maintain relative control would further increase payload usefulness and reduce pilot 

workload even further. This paper covers the development and design of an off-the-shelf UAV to 

operate autonomously in relation to a stationary wall. This project demonstrates that 

simultaneous yaw and pitch control loops can be executed on a microcontroller, installed on the 

drone aircraft, to perform wall-standoff control. For more robust automated control, 

improvements beyond this project will be necessary to achieve finer control motion and more 

sophisticated control. However, this first step in demonstrating automated aircraft control 

relative to an object can still provide practical uses for drone payload operation.  

  

 

Figure 1 - Capstone Project Drone in Flight 

Image courtesy of Ryan Cooper, Santa Clara University 
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1. Introduction  

1.1. Unmanned Aerial Vehicles and Drones 

Unmanned aerial vehicles or UAVs are becoming more and 

more prolific. Ranging from mere inches in size and 

carrying no payload, to tens of feet across and the ability to 

carry weapons and heavy sensors, the usefulness of these 

computer-piloted aircraft continues to expand into more and 

more applications. The type of UAV varies from aircraft 

resembling conventional looking airplanes and helicopters, 

to more unique shapes, such as quad-, hex-, and octocopters.  

One rapidly expanding UAV market involves quad/hex/octocopter vehicles. These aircraft, 

commonly referred to as 'drones', usually vary in size 

from a few inches to approximately 2-3 feet across. 

They are commonly identified by their four, six, or 

eight motors arranged in a somewhat circular pattern. 

They are usually electrically powered, although they 

can be powered by other means such as gas motors.  

These drones have a few unique characteristics that 

make them very simple for someone to use. The 

airframe is simple to build (or prebuilt), there are no 

control surfaces aside from the spinning propellers to 

build, mount, or maintain, and when combined with a 

simple flight computer mounted to the airframe, these 

drones are very stable and simple to fly. While many 

drones or remote controlled aircraft are flown using a 

hand-held remote controller, many controllers allow 

automated navigation via command uplink or preloaded waypoints.  

1.2. Flight Computers 

Copter-style vehicles are difficult to pilot without the assistance of a flight computer. This is 

because small disturbances in aircraft movement lead to large changes in aircraft velocity, 

making the vehicle difficult to control. Drones equipped with onboard flight computers will 

sense the orientation and acceleration of the aircraft in all three dimensions, as well as the control 

the input from a user's remote control. From this basic data, the computer will calculate the 

Figure 2 - RQ-4 Global Hawk UAV 
 Image courtesy of Author Stacey Knott, Wikipedia, and 

The United States Air Force  

Figure 3 – UDI Nano Quadcopter sitting on the 

capstone project drone 

Image courtesy of Ryan Sass, Santa Clara University 
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proper orientation the aircraft should assume, and, having specified the configuration of the type 

of aircraft (usually H, X, or circular hex or octo), it will adjust each of the 4, 6, or 8 motors to 

achieve aircraft control under the four degrees of independent control: roll, pitch, yaw, and 

thrust. These adjustments occur in response to the user's input as well as to keep the aircraft 

stable and compensate for things such as slight differences in motor performance at a given 

power setting. This makes tasks such as a copter aircraft hovering incredibly simple.  

As the sophistication of these flight computers 

increases, the functionality of these drones does as well. 

The sensors that these computers use extend from just 

accelerometers to measure the aircraft‟s orientation. 

More sophisticated computers use compasses for 

heading, barometers for altitude, GPS for precise 

location, and telemetry for sending parameters to a 

ground station. These modern flight computers can 

perform many autopilot features, including holding heading/position/altitude, flying at a 

specified speed/heading/altitude, automatically taking off and landing, and loitering or circling 

over a certain location.  They can also combine these functions to fly complete missions, flying 

to a sequence of pre-specified GPS coordinates. They can activate payloads automatically as 

well, and some have failsafe modes for responding to conditions such as low battery, the loss of 

a communication link, or flying outside a pre-defined area. All these automated tasks can be 

transmitted to the aircraft via telemetry link before or during flight. Because of this 

sophistication, these flight computers can maintain absolute control over the stability and 

position of an aircraft.  

1.3. Drone Uses and Applications 

This absolute control over an aircraft allows drones to support a wide range of automated tasks 

including aerial surveillance, aerial surveying, filmmaking, journalism, law enforcement, search 

and rescue, scientific research, disaster relief, 

archaeology, cargo transport, and agriculture. In 

almost all cases, the drone itself operates as the 

platform that a payload will operate from to 

achieve given tasks.  

Common types of payloads include cargo, cameras, 

weapons, radar, sensors, and transmitting devices. 

These payloads can be as simple as a user-activated 

camera, or as complicated as computer-assisted, 

visual tracking devices. The payload can be used 

for commercial applications, such as shipping of 

Figure 4 - APM 2.6 Flight Computer 
Image courtesy of 3DR 

Figure 5 - md4-1000 drone testing for DHL package 

delivery 
Image courtesy of Author Frankhöffner and Wikipedia 
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goods, research applications such as geological surveying, or military applications, such as firing 

of weapons.  

Operation of the payload and the aircraft sometimes requires either automation or multiple users. 

Consider, for instance, a drone equipped with a camera equipped to pan and tilt with user control 

being used for surveillance. In order to properly surveil an object of interest, not only must 

control of the aircraft be maintained in order to provide the proper location for the camera 

payload, but the camera itself must be operated in order to properly record the object itself. If the 

aircraft moves, aircraft and camera control must be performed simultaneously in order to 

maintain surveillance.  

This is where flight computer automation can prove practical and reduce operator workload. For 

instance, the operator flying the surveillance of a drone can set the aircraft to maintain or circle 

it‟s a location described by GPS coordinates while the operator focuses on operating the payload.  

While these flight computers can enable users to autonomously accomplish dirty, dull, 

dangerous, or remote tasks, there are some limitations to what these drone computers currently 

can accomplish.  

1.4. Current Shortcomings of Today’s Drones 

One major shortcoming of drones is their lack of automated control relative to other objects. This 

relative control is paramount for object recognition and avoidance, as well as a maintaining flight 

automation without accurate GPS connection, such as in the event of bad reception or flying 

indoors. Most drones are not equipped with visual or proximity sensors to detect objects that 

could pose risk of damage to either the aircraft or the imposing object.   

Most drones are not equipped 

with proximity sensors or flight 

computers configured to 

recognize objects that pose risk 

to drones. At the moment, the 

most prudent way for drones to 

avoid objects while performing 

automated flying missions is to 

set flight parameters so that the 

drone either flies above the 

hazard or flies with enough space 

between it and the hazard to 

avoid a collision.  

While automated flight to avoid flying near objects is good practice to avoid collisions, it does 

limit what drones can accomplish. Things such as building inspections, indoor flight, close 

Figure 6 - Flight parameters to avoid hazards, such as this building 
Image courtesy of Ryan Sass, Santa Clara University 
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proximity remote photography, and 3D object mapping are limited to manual drone operation 

because current available drones are not equipped with object recognition or collision avoidance 

capability. Despite this, manual flying of a drone in close proximity to objects is difficult and a 

considerable risk. Things such as disturbances, user disorientation, confusion, or distraction can 

still result in collision due to user error.  

Automating the aircraft to perform relative control – such as keeping a certain distance from an 

object, would reduce pilot workload and provide safer drone operation while the user controls 

the payload or drone position.  

An example where this relative control would 

prove useful would be using building 

inspections. If the intended need is to 

photograph the side of a tall building at a close 

enough range for inspection purposes, 

manually lifting a person to each location to 

take a picture could prove difficult, unsafe, 

and impractical. Having a drone hold a steady 

distance away from the side of the building, 

while a user operates the drone‟s position 

vertically as well as laterally in order to 

position the payload properly would be much 

safer and faster.  

1.5. Capstone Project Description and Purpose 

The purpose of this project is to exhibit control of yaw orientation and distance of a drone 

relative to a wall. To do this, the following 

tasks were performed: design of a sensor 

package, development of dual control loops in 

an Arduino microcontroller, integration of the 

sensor package and microcontroller with the 

existing drone and its autopilot, and 

experimentation and testing of the drone to 

prove project capability. The result of the 

project is a drone that operates the pitch and 

yaw axes of flight control autonomously to 

demonstrate basic “plane lock” with a vertical 

wall. This “plane lock” can be characterized 

as the drone still exhibiting user control in the roll (left / right) and thrust (up / down) axes but 

Figure 7 - A drone performing a building inspection 
Image courtesy of Building Enclosure Consulting LLC 

Figure 8 - The complete automated drone system used for 

this capstone project 
Image courtesy of Ryan Sass, Santa Clara University 



 

Page | 5  

 

holds orientation and distance along an invisible vertical plane parallel to the wall at a set 

distance away. This allows the drone to fly autonomously and follow the wall‟s features, easing 

operation of manual flight.  

Observing the drone fly when automation is first activated midflight, the drone will align itself 

(yawing or turning left and right) and proceed to maintain a pre-programmed normal distance to 

a wall (back and forth) with an accuracy of about two feet. The drone will still require user 

control of the roll (left and right) and thrust (up and down) axes, as well as user control for 

modes of flight such as liftoff, pre-automated flight positioning, and landing.  

1.6. Project Performance Objectives  

Because this project is an exercise in demonstration of control loop implementation on a drone 

aircraft, discernable, measurable, and reasonable project objectives were hard to define because 

it was not clear at the start of the project if this type of control actuation could even be 

implemented. A few performance objectives were set that could at least give the project 

direction. These performance objectives included:  

 Demonstrate Aircraft Control with the use of yaw and pitch control loops. 

 Demonstrate Yaw Control within ± 20° from normal.  

 Demonstrate Pitch Control within ± 3 ft. of a given set point.  

Due to the unknown nature of the vehicle‟s performance under automated control and ease or 

ability of operation, no further project definitions, such as response time or settling time, were 

defined. FAA regulations and existing school policies required that project testing had to be 

performed indoors in a very limited workspace. This prevented more aggressive control 

objectives for this project. Nevertheless, basic control was achieved and refinements are being 

planned as future work. 
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2. System Overview 

2.1. System Component Description 

The project is comprised of three separate sub-assemblies that have been merged together onto 

one operational aircraft. The drone itself is a standalone system. With an RC transmitter and 

telemetry antenna connected to a ground station, the drone is capable of manual flight, as well as 

fully autonomous flight, provided GPS connection has been established and the drone‟s 

parameters and proper flight 

mode have been set. This 

aircraft has been specifically 

designed to fly payloads, and 

the Pixhawk flight computer 

that controls it has been 

developed by a team of 

engineers outside the scope of 

this project. Both are 

consumer products that have 

been modified for this project 

in minor ways to meet project 

goals.  

The other two systems that comprise a majority of development for this project are the sensors 

and control system. This system is almost completely isolated from the Pixhawk and drone in 

terms of operation. These systems include an Arduino, PWM board, Lidar sensors, SD Card 

reader and 9V power supply, all of which are mounted on the top of the aircraft. This system 

provides the distance sensing and calculation, control loop execution, and control signal 

actuation to the Pixhawk and drone assembly to achieve automated flight in the “plane lock” 

mode. The Pixhawk is not designed to operate in this fashion when purchased directly off the 

shelf.  

It is important to understand, too, how this actuation occurs. From the point of view of the 

Pixhawk, the operation of the drone under manual or automated Arduino control is 

indistinguishable, and the Pixhawk does not change any of its operational flight behavior during 

the shift between automated or manual control. The only change that occurs in flight is the 

origination of input signals for yaw and pitch: either coming from the RC receiver by way of the 

RC transmitter from a user, or from the PWM board by way of the Arduino board from the 

control loop iteration.  

In this way, the Pixhawk and drone provide a stable flight test platform in which to demonstrate 

the control capability of the Arduino. When all neutral control signals are sent to the Pixhawk, 

Figure 9 - Project aircraft with subsystems in outline 
Image courtesy of Ryan Sass, Santa Clara University 
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the Pixhawk continues to maintain stability and level orientation of the aircraft. When any input 

signals move from neutral, the Pixhawk works to control the stability of the aircraft in the new 

flight attitude, without any regard to the Arduino control loops or set points. Therefore, the 

control exhibited by the Arduino would be no different than if a user was attempting to control 

the drone manually.  

2.2. Drone System Overview 

2.2.1. Introduction to X-8 Drone 

The drone aircraft is a 3D Robotics X-8, an 

octocopter type platform. The X-8 platform is 

an aircraft with 4 main motor booms, oriented 

in an X shaped pattern. This means, in 

comparison with a conventional aircraft, the 

„nose‟ of this aircraft is situated approximately 

45° between two of the motor booms. The „8‟ in 

the X-8 description is to indicate that this drone 

has 8 motors, 2 motors mounted on each motor 

boom. It has dimensions of approximately 22” x 28” x 12” (560mm x 710mm x 305mm). 

2.2.2. Propellers, Motors and Airframe 

The propellers are approximately 10” in diameter. There 

are four clockwise spinning propellers and four counter-

clockwise spinning propellers. They are mounted to each 

of the motors in a pattern where each motor boom has 

counter-rotating propellers. Each motor‟s propeller spin 

direction is opposite of the closest three motors. For 

reference, the top right motor spins CCW
1
. Establishing 

motor spin direction is important for proper control of the 

aircraft, as roll, pitch, and yaw, and aircraft stability are 

achieved by varying the speed of the proper motors in order to achieve each type of movement.  

The airframe of this aircraft is comprised of carbon fiber 

for the fuselage and aluminum square channel for the 

motor booms. It has „feet‟ type landing skids, which are 

comprised of carbon fiber panels with spacers inserted to 

give substantial width to the feet. 

The main fuselage is comprised of two pieces of carbon 

fiber sandwiching the ends of the four aluminum motor 

booms. This gives the fuselage an upper, lower, and 

Figure 10 - 3DR X-8 Drone 
Image courtesy of 3DR 

Figure 12 - Motor spin direction for the X-8 
Image courtesy of 3DR 

Figure 11 - Interior of aircraft where speed 

controllers and compnents are located 
Image courtesy of Ryan Sass, Santa Clara University 
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interior location for mounting components. There is also a smaller upper housing on top of the 

upper part of the fuselage for extra mounting locations.  

The lower part of the fuselage holds the battery as well as an indicator buzzer. The interior 

houses the Electronic Speed Controllers (a module which regulates power going to a motor and 

modulates speed based on a control signal), power 

distribution blocks and power module for the motors and 5V 

peripherals, and the PPM sum receiver (the component that 

combines the 8 PWM input channels). On the upper part of 

the fuselage, the flight computer, a Pixhawk PX4, the safety 

switch, telemetry antenna, and GPS & compass module are 

mounted. In the space of the landing skid feet, the RC 

receiver is mounted for manual user control via RC 

transmitter.  

2.2.3. Pixhawk Operation 

The Pixhawk flight computer manages all flight operations. In normal operation, the drone can 

be flown manually by a user sending signals from an RC transmitter to the RC receiver. The 

receiver is connected to a PPM sum receiver and combines all 8 control signals and sends them 

directly to the Pixhawk. From there, the Pixhawk will handle control of the aircraft motors to 

achieve the drone flight commanded from the user. The Pixhawk can also be programmed to fly 

autonomously by uploading parameters via telemetry or USB and 

establishing a GPS connection
2
.  

This means the drone has many modes of operations and can be flown 

completely manually, in partial autonomous modes (such as Altitude 

hold mode where throttle level is controlled), or completely autonomous 

modes (such as flying a route with waypoints, or loitering around a user 

selected point at a specified altitude.  

All these modes of flight operation assume the craft is being flown outdoors, as the Pixhawk 

does not have a way of recognizing any potential obstacles if flying low enough to pose a risk of 

collision. For the rest of this report, it will be assumed the drone is operated only in the complete 

manual Pixhawk mode when switching between user control and automated Arduino flight. The 

project was designed around the Pixhawk operating only in this STABALIZE mode, and in 

LAND mode for landing purposes.  

2.2.4. Pixhawk Flight Modes 

The two flight modes the Pixhawk uses for this project were LAND and STABALIZE mode. 

LAND mode – where the thrust axis is set to safely lower the aircraft to the ground – is used as a 

failsafe mode in the event of an unsuitable flight condition during normal operation. 

STABALIZE mode – allowing a user to fly the vehicle manually, but will self-level the roll and 

Figure 13 - Top of the X-8 showing motor 

booms and landing skids 
Image courtesy of 3DR 

Figure 14 - Pixhawk PX4 

flight computer 
Image courtesy of 3DR 
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pitch axes, and hold the yaw 

heading when flight controls are 

neutral. In either of these Pixhawk 

modes, no relative control is 

calculated by the Pixhawk, the 

Pixhawk only executes the 

commands issued by the user or 

the automation controller.  

2.2.5. Control Signals To and 

From the Pixhawk  

For the Pixhawk to achieve 

proper flight orientation and control, the Pixhawk conventionally receives flight control signals 

from a user via RC transmitter - in this case an 8-channel transmitter. Four of these channels are 

dedicated for the main axes of flight: pitch, roll, yaw, and thrust. The other four channels are 

auxiliary channels, two of them being utilized in this project – one for specifying Pixhawk flight 

modes and the other for enabling automation of the pitch and yaw axes.  

These 8 channels from the user are 

sent from the RC transmitter to the 

RC receiver on the aircraft. The 

signals, from transmitter to 

receiver are in the form of PWM 

wave – Pulse Width Modulation, 

where signal changes varying on 

the amount of the cycle being 

“high” versus “low”. The 

characterized signal is ~380mV, 

with a 45 Hz rate, and about a 7% 

duty cycle at 50% axis rate. The 

signal will vary from about 5% to 

9% at the extreme ends of an axis 

(i.e. 0% and 100%).  

From the RC receiver, the 8 signals, or channels, are combined through a PPM sum receiver. 

This PPM (Pulse Position Modulation) sum receiver combines each of the 8 signals into a single 

signal by spacing each pulse a given distance apart and summing their signals into a single 8 

pulse signal. This signal will carry all 8 channels worth of information during one transmission 

cycle. From the PPM sum receiver, the signal is sent to the Pixhawk where it is read.  

Once the Pixhawk reads the incoming signals from the PPM sum receiver, it interprets the 

commands it receives and calculates how the aircraft must move in response to the 

Figure 15 - Pixhawk flight modes 
Image courtesy of Ryan Sass, Santa Clara University 

Figure 16 - RC Control Signals 
Image courtesy of Ryan Sass, Santa Clara University 
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corresponding control signals. Once the proper movement is determined, the Pixhawk calculates 

how each of the 8 the motors must be adjusted to achieve the proper movement, and control 

signals to each of the ESC‟s are updated. These PWM signals for each of the 8 motors are sent 

out to each of the respective motor‟s ESCs, which adjust each motor speed accordingly.  

2.2.6. Basic Power 

The Pixhawk receives power via the power module, a voltage regulator that takes the drone‟s 

14.7V battery power and regulates part of it to 5V, which supplies the Pixhawk. This power 

module supplies the Pixhawk all the power it needs to power all other drone components, 

including the GPS/compass module, telemetry antenna, RC receiver, buzzer, and safety switch. 

The motors receiver power via the ESC‟s which receiver power from the 14.7V battery through 

the power distribution blocks. This modulates power going to each one ESC in order to protect 

overloading an individual motor.  

2.3. Sensing System Overview 

2.3.1. Introduction 

The sensing system is the 

main component that was 

developed to sense relative 

distance and orientation to 

a vertical wall. The sensing 

system includes two Lidar 

sensors, a specially 

designed mount affixed to 

the front of the aircraft, and 

an Arduino to support 

operation of the sensors.  

2.3.2. Lidar Sensors 

Two LIDAR-Live v2 “Blue Label” distance sensors were used to sense the yaw angle and 

distance the aircraft is from a wall. Each sensor emits a laser light pulse to determine the distance 

it is from an object, and outputs a calibrated signal corresponding to the distance the sensor 

reads.  

The Lidar sensors operate best over a distance range approximately 250 cm to 1250 cm from an 

object. The Lidar sensors can perform measurement sensing at speeds up to 500 readings a 

second
3
. It is powered by 5V from and communicates via I2C communication protocol. Both 

power and communication for the two sensors were handled directly by the Arduino board.   

Figure 17 - Sensing system close-up showing mount and sensors 
Image courtesy of Ryan Sass, Santa Clara University 
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Consideration must be taken with these sensors to also provide proper error rejection. If the 

sensors fall out of range or to not get an accurate reading, the values provided from the Lidar 

sensors could be wildly inaccurate.  

2.3.3. Mount 

These mount was specifically designed to hold the two Lidar sensors to the aircraft and in the 

proper position. This mount holds the two sensors in a differential-style configuration. The 

sensors are each tilted 7.5° from a direct normal position when facing the wall. This angling of 

the sensors increases the sensor package‟s sensitivity to slight changes in yaw angle.  

With differential style sensing, careful 

consideration should be used when sensing at 

long distances, as the further away the sensor 

is from an object, the wider the wall must be 

for the sensors to read accurately. This 

differential sensing is important, though, 

because it allows the calculation of yaw angle 

to the wall. When performing relative 

distance control, it is necessary to stay as 

„squared up‟ to the wall as possible to 

provide the most accurate distance readings, 

which in turn improves distance control 

accuracy.  

The Lidar sensor package was mounted on 

the very front of the aircraft, pointing forward. This positioned the sensors such that their laser 

projections occurred at a level between the upper and lower spinning propeller blades. This 

allows the Lidar sensors to take readings with minimal obstruction or interference from the 

propeller blades.  

2.4. Control System Overview 

2.4.1. Introduction 

The control system consists of the two control loops that operate simultaneously to automate the 

yaw and pitch control of the aircraft during flight. These two control loops operate using PID-

style control. The yaw control system uses only proportional control while the pitch control uses 

proportional and derivative control.  

Originally, the control loops were to work separately – control yaw until the craft is squared to a 

wall and then control pitch. This proved to be problematic and not very functional during flight, 

so the two control loops actually work in parallel. 

Figure 18 - Lidar sensor mount 3D model 
Image courtesy of Ryan Sass, Santa Clara University 
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 The basic operational flow involves continual 

control for the yaw command. If the yaw angle from 

the wall is within a certain range of acceptability, the 

pitch control loop will also operate.  

Both control loops are loaded and executed on an 

Arduino board, the same as the Arduino board used 

for the sensing system as well. There are breakout 

boards for the control system to handle recording 

data as well as proper output for system integration. 

The operation of the control loops is continuous, and 

a user set switch from the RC transmitter will 

activate when the control loop signals are sent to the 

Pixhawk. This allows for full manual control until 

the user is ready to operate in autonomous mode.  

2.4.2. Yaw Proportional Control 

The yaw control is a proportional control loop. This means that the further the drone is turned 

away from the wall, the larger the control signal will be to turn it back to its proper orientation. 

As it reduces its yaw error, the control signal to turn the aircraft more reduces until it reaches a 

deadband, and the yaw command will return to neutral.  

When controlling the yaw of the drone, the Pixhawk does not exhibit drift of yaw. This is 

characteristic of the STABALIZE flight mode, however strong enough control signals will 

produce minor yaw drift after returning abruptly to neutral. Because of this, derivative control is 

not necessary to achieve acceptable control.  

2.4.3. Pitch Proportional/Derivative Control 

The pitch control is performed with a proportional and derivative control loop. This means that 

the further away the drone is from a given distance from the wall, the harder it will push to return 

to the set point. However, the derivative part of the control loop will oppose the push of the 

proportional control, especially if the drone moves very quickly. This derivative control provides 

correction from large control overshoot of the set point as well as control loop stability.  

When controlling the distance the drone is from the wall, the Pixhawk can drift a decent amount 

when under neutral pitch control, even when the drone is „trimmed‟ properly. This means that if 

the drone is given a decent „push‟ forward and then return to neutral, the Pixhawk does not bring 

the drone back to an immediate stop, but just returns the aircraft back to a level orientation. 

Without drift correction, the drone will coast, much like how a speeding boat will continue to 

coast after throttling down. Due to this aircraft drift, the derivative control is very important. The 

drift that occurred from proportional control alone was enough to force the aircraft to oscillate in 

an unstable control mode.  

Figure 19 - Control and Sensing System Layout 
Image courtesy of Ryan Sass, Santa Clara University 
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2.5. Integration Overview 

The integration of these two systems allows the aircraft to operate as a standalone package, with 

all components (except the RC transmitter) on board the aircraft. The sensing package is 

mounted to the front of the aircraft, and its signals and power being provided and received by an 

Arduino microcontroller mounted on board the aircraft.  

This control loop system is mounted to the top of the drone. The control signals are continually 

generated by the Arduino, and through the use of a remotely activated switch, are toggled to be 

received by the Pixhawk for flight automation.  

This method of integration allows the drone to switch between operation in manual and 

automated flight modes seamlessly. This occurs because both manual and automated control 

signals operate continuously throughout the flight but only one set of signals reach the Pixhawk. 

Therefore, as long as the Pixhawk remains in its STABALIZE mode the drone can switch back 

and forth between automated mode and manual control mode without any interruption to the 

Pixhawk.  

Roll and thrust will remain under control of the user, and during flight operation, minor 

adjustments will be required to maintain proper lateral and altitude spacing. This is where 

demonstration of the functionality of relative control automation is useful for things such as 

surveying or inspection of objects such as tall building, walls, or areas that are hard for humans 

to normally reach.  
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3. Detailed Design Description 

3.1. Introduction 

The following chapter will discuss in detail what was developed for the project over the course 

of the year. The project is broken into the following different areas:  sensing system, control 

system, system integration, electrical wiring and layout, software design, data collection, and 

Pixhawk configuration. This project stated from scratch, and as a result, there were many 

different aspects of the project to develop in order to successfully demonstrate operability.  

3.2. Sensing System Design 

3.2.1. Lidar Sensing System 

The design of the sensor system is a specially designed mount with two Lidar sensors attached to 

it. The system attaches to the 

front of the aircraft, and holds 

each Lidar sensor at a slight 

angle (7.5°) from facing 

directly forward. This angled 

difference makes the sensors, 

acting in unison, more sensitive 

to angular orientation.  

The 7.5° mounting angle was 

chosen after the first design iteration trying a 10° mounting angle. This larger angle required a 

much wider area of wall in order to provide accurate measurements, especially when the sensor 

system is at further distances. The mounting angle was reduced in order to reduce the area of 

wall required, but also maintain some sensor sensitivity.  

To sense the distance from the wall, the two sensor distance readings are averaged. To sense the 

relative angle from the wall, a sophisticated calculation is 

performed.  

In order to find the angle the Lidar sensor is with the 

normal of the wall, it is assumed that the sensors were 

mounted 15° from one another, and that the distance 

between sensors was sufficiently smaller than the distance 

from the wall, and was assumed to be zero. This allows 

triangulation to occur using law of cosines formula:  

                 

Figure 21 - Law of Cosines 
Image courtesy of Ryan Sass, Santa Clara University 

Figure 20 – Isometric and top view of the sensor system mount 
Image courtesy of Ryan Sass, Santa Clara University 
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With respect to Figure 22, to find the normal angle, C, requires finding angle A, as well as the 

NORM DIST and TOTAL WIDTH. Then the law of cosines and Pythagorean‟s theorem can be 

applied to find the value of A, which is complimentary to C.  

Knowing the angle the sensors are relative to each other, along with their sensor distance 

readings, it is possible to calculate the TOTAL WIDTH using the law of cosines. Calculating the 

NORM DIST requires taking the smaller sensor 

distance value subtracted from the average sensor 

distance value. This gives value to the hypotenuse and 

opposite sides of a right triangle formed between the 

shorter-distance sensor and the average distance. This 

is enough information to use Pythagorean‟s theorem to 

find the angle A. Taking the inverse sine of the NORM 

DIST divided by half the TOTAL WIDTH and 

converting to degrees gives the yaw angle the aircraft 

is away from normal to a wall.  

This formula can be summarized and simplified in the following formula: 

                
                                         

 
 
√(   )  (   )   (   )(   )       

 

Where:  

                               

                                

This formula helped determine accurate angle measurements, even when at extreme angles. 

While at small angles, a linear approximation can be assumed, at larger angles greater than 30° 

of yaw, a large discrepancy can be seen between a linear approximation and the calculated 

Figure 23 - Pythagorean Theorem 
Image courtesy of Ryan Sass, Santa Clara University 

Figure 22 - Approximate geometry of the Lidar sensors with yaw error 
Image courtesy of Ryan Sass, Santa Clara University 
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approximation. The calibration chart, shown below, depicts this difference and shows how 

altering the yaw angle can produce a linear approximation at lower values, but its accuracy 

diminishes at higher angles.  

 

Figure 24 - Differential Lidar Sensor Calibration Chart 
Image courtesy of Ryan Sass, Santa Clara University 

Therefore, while a simple linear approximation between the sensors can be expressed by the 

following formula:  

                       (        ) 

Where:  

                               

                                

It is clear that yaw angles larger than 30° and especially larger than 40° exhibit large sources of 

error. Therefore the equation for yaw angle was chosen for greater accuracy.  



 

Page | 17  

 

Figure 25 - Arduino Mega 2560 r3 
Image courtesy of Ryan Sass, Santa Clara University 

3.2.2. Arduino Microcontroller 

The Arduino control board chosen for this project is the 

Arduino Mega 2560 r3. This board, while large in 

comparison to the rest of the Arduino product line, is 

still small enough to fit on top of the drone, and has 

enough computing power and speed to maintain 

reasonable control of an aircraft – a fast moving vehicle.  

The Arduino handles all the I2C communication and 

power with the Lidar units. It calculates distance and 

yaw angle readings from the Lidar sensors, records this information using the SD card reader 

board, and uses the Lidar data information in the control system.  

3.3. Control System Design and Map 

3.3.1. Overall Control Loop Design 

The overall design of the dual control loop system is the heart of the automated control. For each 

iteration of the main control loop, yaw control is performed and it is determined if the pitch 

control loop should be performed or if the pitch control output signal should be set to be neutral. 

This determination is based on the state of the sensing system, the calculated yaw angle, and the 

relative distance from the wall. If the drone is too close or far away from the wall (i.e. out of 

sensor range or too 

close for safe 

operation), too askew 

from the wall to 

determine safe distance 

control, or there‟s a 

sensor reading error, it 

will prohibit the drone 

from controlling pitch 

and restrict the drone to 

only yaw control. This 

avoids unexpected pitch 

commands when in 

unusual flight 

circumstances.  

Assuming none of the error conditions are met, the overall control loop control executes one 

iteration of yaw angle control and then executes one iteration of pitch angle control. This process 

is continually repeated as long as the Arduino is powered. The output control signals are 

Figure 26 - Overall control loop flow diagram 
Image courtesy of Ryan Sass, Santa Clara University 
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generated from the PWM board. The control loops continually operate, even when under manual 

control. The PWM control signals, however, are not sent to the Pixhawk when in manual control. 

These two loops are specifically designed to work in unison, as working with gated style control 

proved to be difficult to achieve smooth pitch control and was unreliable.  

3.3.2. Yaw Control Loop 

The yaw control loop is modeled after a PID control loop; however it only utilizes proportional 

control. The yaw angle is defined by the angle measured between the centerline of the aircraft 

and a normal line to the wall. Therefore, when the aircraft is positioned squarely nose first 

towards the wall, it is considered to have 0° of yaw angle. Any yaw angle that deviates from this 

has either positive or negative degrees of yaw error.  

This defines the set point of the yaw control loop. The control loop is hard coded to maintain 0° 

of yaw angle, with a deadband of ±3°. The control loop follows proportional control – the higher 

the absolute value of degrees turned 

away from the set point the aircraft is, 

the larger the control signal generated 

to return the aircraft to the set point. 

The control loop is also coded to limit 

the amount of control signal, thereby 

reducing excessive control input at 

large angles of error.  

While the yaw control loop exhibits 

some overshoot with proportional 

control, there is very little drift produced by the control input, and the overshoot is rapidly 

corrected. During flight tests, yaw error settled inside the deadband within 3 seconds. A level of 

overshoot was purposely tuned fort the controller, as a more critically damped system was 

difficult to observe during video recording of test flights of the aircraft. Over-embellishing the 

control response helps demonstrate the control authority of the yaw control loop.  

3.3.3. Pitch Control Loop 

The pitch control loop is modeled after a PID control loop; however it omits the Integral part of 

the control. The distance from the aircraft to wall is controlled by the pitch command, assuming 

the aircraft is oriented normal to the wall. The aircraft must have an absolute yaw angle value of 

less than 40° in order for the pitch control loop to be active. Actuating outside these yaw 

parameters runs the risk of putting the drone in an unsafe position to fly, in the event that there is 

something between the wall and the normal distance to the aircraft.  

Figure 27 - Yaw control loop flow diagram 
Image courtesy of Ryan Sass, Santa Clara University 
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The aircraft is hard coded to maintain a distance of ~22 ft. or 670 cm from the wall. The 

proportional control behaves just the same as the yaw proportional control does – pushing harder 

towards the set point the larger 

the distance the aircraft is away 

from the set point. There is a 

very small deadband for the 

distance, and there is also an 

upper limit of how much 

control signal can be provided. 

However, due to the fact that 

there is substantial allowance 

by the Pixhawk for drifting 

once a neutral signal is given to 

the Pixhawk, derivative control 

is also necessary for the drone 

to avoid drastically overshooting the set point or behave in an unstable control loop setting.  

The derivative control portion of the control loop is necessary to correct for the drift caused by 

large control inputs that can occur from the Arduino. This derivative control, which keeps 

memory of the previous iteration‟s amount of distance error, opposes fast movement towards the 

set point, and contributes to its settling time. When the aircraft overshoots the set point, the 

derivative control promotes more movement away from the set point; however the proportional 

control is tuning to overpower the derivative control input in order to avoid it being an issue for 

control.   

3.3.4. Mechanical Actuation 

Mechanical actuation of the drone is performed by the Pixhawk which receives control signals 

from the Arduino and PWM board or the user. To achieve motion, the Pixhawk will control 

altering groups of motors in order to achieve the motion desired. For the three primary control 

axis – roll, pitch, and yaw - actuation requires motors change their speed in two groups of four 

motors, and the corresponding adjustments adjust so the net sum of the thrust produced remains 

constant. It is important to note that as the moment produced by thrust changes the orientation of 

the aircraft, this will change direction of thrust with respect to gravity, and gives the appearance 

that net thrust changed. However during pure single axis control changes this is not actually the 

case.  

The fourth axis of control, thrust, is the exception to motor actuation. When the throttle axis is 

actuated all 8 motors work in unison. Increasing speed of all the motors increases thrust and lift, 

but no changes in moment of any axis occur.  Decreasing speed of all the motors decreases thrust 

and lift, but again, no changes in moment of any axis.  

Figure 28 - Pitch control loop flow diagram 
Image courtesy of Ryan Sass, Santa Clara University 
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For the actuation of any control axes, motor adjustment is executed and controlled by the 

Pixhawk, which receives user commands and determines what motor actuation to perform to 

achieve proper flight axis movement. 

To roll, the Pixhawk adjusts the group of four motors on the left and right side of the aircraft. 

This reduction in thrust on one side and increase on the other will create a moment and roll the 

aircraft. To pitch, the Pixhawk adjusts the group of four motors in the front of the aircraft and the 

back of the aircraft. This effect is the same as the roll actuation, just performed along the pitch 

axis instead of the roll axis. To yaw, the motors actuated are based on their spin direction. The 

counter clockwise and clockwise spinning motors adjust speed in opposition. The end effect is 

no net change in thrust, but a change in net torque produced by the motors. This creates the yaw 

movement. To achieve complete flight actuation, the adjustments the Pixhawk makes to the 

motors is a superposition summation of all four axes of flight applied to each motor.  

Unlike a conventional helicopter, thrust is generated by the speed at which the propellers spin, 

not the angle at which the propeller blades meet the air. This means that in the event of one or 

multiple motor failures, the Pixhawk will attempt to regain flight stability; however this 

compensation may be extremely difficult to control. Also, unlike a conventional helicopter, in 

the event of battery failure, autorotation is not possible and the drone will glide like a brick.  

3.3.5. Arduino and PWM Servo Board 

The Arduino and the PWM servo board are the primary components that handle the control loops 

and output. The Arduino board handles execution of the control loops, and is the same 

component shared with the sensing system described in Section 2.3.  

The PWM board, described later in Section 3.4.4, handles generating the output signals as 

determined by the Arduino, in order to achieve signal the Pixhawk to achieve mechanical 

actuation. In communicating with the PWM servo board via I2C, the Arduino acted as the master 

controller, while the other peripherals were assigned as slaves.  

3.3.6. SD Card Reader Board 

The Adafruit Micro SD card breakout board 

(254), also referred to as the SD card reader 

board, is a small board designed to handle the 

data recording of the control loops for 

performance analysis. The SD card reader 

board is attached to the Arduino through 

digital pins 50-53, and transfers data via SPI 

Protocol. This protocol is a much faster data 

transfer method than serial output, and 

therefore reduces the impact to control loop 
Figure 29 - Adafruit Micro SD card 
Image courtesy of Adafruit 
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execution speed by the Arduino control loops perform to report the data.  

Data recording and transfer is a challenge for this project. Because the drone is airborne, 

umbilical style data transfer isn‟t practical and transfer via wireless communication wasn‟t 

explored due to time constraints. Also, handing serial data logging can reduce the Arduino‟s 

speed to execute control loops as well, and could affect how well the control loops perform. 

Luckily, the change in performance using SPI protocol and no data recording is not noticeable 

from a visual perspective. This breakout board allows data recording of the Lidar sensor input 

and the PWM signal output values in a real-time setting with minimal changes to the operation of 

the software or flight performance.  

3.4. System Integration 

System integration required sending the output signals generated by the control loop system to 

the Pixhawk in the same size and frequency as normal RC signals. It also required the ability to 

toggle between automated and manual control for flight safety. This was achieved by a RC 

activated switch and relay. Other aspects of integration cover the mounts installed on the aircraft 

and proper Pixhawk configuration.  

3.4.1. Pitch and Yaw Signal Handling 

In order to signal the Pixhawk to perform motion, whether in automated or manual control mode, 

all control signals go through a PPM sum receiver. This component accepts eight PWM input 

signals – including pitch and yaw, combines all eight into a single signal, and sends them directly 

to the Pixhawk where actuation occurs.  

In order to integrate two separate modes of flight, manual and automated, handling to two sets of 

control signals for pitch 

and yaw was required. To 

handle switching between 

manual control and 

automated control, a RC 

activated switch and DPDT 

relay were utilized to 

handle directing the sets of 

control signals into the 

Pixhawk inputs.  

The DPDT relay‟s switch 

contacts connected the 

PPM Sum receiver‟s yaw 

and pitch inputs to either 

set of control signals. The manual yaw and pitch signals (FROM the RC receiver) are connected 

Figure 30 - Physical Layout of the pitch and yaw signal handling components 
Image courtesy of Ryan Sass, Santa Clara University 
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to the NC switch contacts of the DPDT relay, and the automated yaw and pitch signals (FROM 

the PWM board) are connected to the NO relay contacts. Manual control was purposefully 

chosen to transmit through the NC contacts. In the event of Arduino failure or relay failure, the 

relay would most likely switch off and the NC contacts would return to their normal position. 

This would maintain manual control input during component failure.  

 

3.4.2. RC Activated Switch 

The Turnigy Receiver Controlled Switch, referred to as the RC activated switch, is used to 

provide power to the DPDT relay. The DPDT relay handles switching between the automated 

and manual yaw and pitch control inputs. When the DPDT relay receives power at the coil, it 

connects the NO contacts to the poles. When no power is supplied to the relay, the DPDT switch 

connects the NC contacts to the poles. The RC activated switch switches power to the relay coil, 

and in effect controls the switching between manual and automated control. 

Figure 31 - Signal flow chart for manual and automated control 
Image courtesy of Ryan Sass, Santa Clara University 
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This switch operates by reading auxiliary channel 1 from the RC 

receiver and will open or close its internal SPST switch if the RC 

duty cycle of the signal it receives is high or low.  

This switch allows reliable switching between automated and 

manual control of the two axes of fight control. To make this 

switch operate with an RC transmitter, an auxiliary channel on the 

transmitter that is operated by a SPDT switch must be chosen to 

activate the RC activated switch  

3.4.3. DPDT Relay 

The DPDT relay and RC activated switch are the key safety features to allow development of 

Arduino automated flight. Because 

automated flight of the aircraft would be 

incredibly risky to test for the entire 

duration of a test flight, the DPDT switch 

allowed the state of automation to be 

toggled.  

The relay was a concern in the electronic 

design because of the physical nature of the 

switching contacts and susceptibility to 

vibrations, especially when mounted to a 

drone with 8 spinning motors. However, 

during flight testing and operation, this did 

not prove to be problematic. More extensive 

testing should be considered to find the most robust relays or discreet device available to handle 

the switching of the signals.  

3.4.4. PWM Servo Board 

The Adafruit 16-Channel 12-bit PWM/Servo 

Driver –I2C interface – (PCA9685) is designed 

to generate PWM signals specified from an I2C 

command
5
. Its primary design is to handle 

controlling power and signal processing for 

small RC servos to operate. However, in this 

project, the power handling is disregarded and 

the PWM output signals are strictly used in 

order to interface with the Pixhawk‟s PPM sum 

receiver to send proper control signals.  

Figure 32 - Turnigy Switch 
Image courtesy of Ryan Sass, Santa Clara University 

Figure 34 - Adafruit Servo Board 
Image courtesy of Adafruit 

Figure 33 - Close-up of DPDT Relay 
Image courtesy of Ryan Sass, Santa Clara University 
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A PWM servo board was chosen for two reasons. First, the board is programmable to adjust the 

PWM signal frequency to the proper value. Second, the board provides a decent resolution of 

duty cycle for the PWM signal, since the duty cycle of a flight control axis (from 0% to 100% 

range) ranges from 5% – 9% PWM duty cycle. These considerations were aspects the Arduino 

board could not perform without loss of resolution or performance. 

The PWM servo board output signals required characterization and tuned in order to match its 

output signal to that of an RC signal. This was performed using a digital oscilloscope as well as 

changing the parameters in the software of the driving Arduino. Once these values were tuned 

and set, no confirmation checks were performed, as there is nothing built in to do so. The only 

feedback that the signals produced by the board are correct is when control authority by the 

Arduino is exhibited. This board is powered by 5V from the Arduino and communicates via I2C 

communication protocol.  

3.4.5. Signal Triggering 

While it was a concern that the signals from the RC receiver and the PWM board going to the 

PPM sum receiver might have to have a common trigger in order to successfully be combined, 

this did not prove to be necessary. It appears the PPM Sum Receiver can handle the switch 

successfully regardless of when each signal starts its duty cycle.  

The only point to note is the PPM sum receiver‟s blue signal light, which during normal 

operation has a slow-steady blink. This will change to rapid blinking for a few seconds when the 

signals sent to the PPM sum receiver toggle between the automatic and manual set of signals. 

This is a clear indication that the PPM sum receiver is dealing with the change in signal start 

times, however signal triggering did not prove necessary and the PPM sum receiver handled it 

flawlessly.  

3.4.6. Mounting 

Mounting to the drone was a very important to put all the added hardware onto the drone. 

Components had to be to access for service or troubleshooting, be securely kept out of the way of 

the propeller blades, maintain a low enough profile to avoid snagging on things or coming loose 

while flying, and positioned in areas to avoid destruction in the event of a crash.  

The mount for the Lidar sensors was created using a 3D printer, and created in ABS plastic. It 

included slotted holes for mounting to the aircraft to facilitate easy installation as well as 

allowing more tolerance for the 3D printer. The Lidar sensors are attached to the mount via four 

through holes and zip ties.  

The other mounts created for this project included the PWM board mount and the Arduino 

mount. Both of these mounts were created with a 3D printer in are of ABS plastic. The PWM 

board is affixed to the aircraft via adhesive backed plastic Velcro. The Arduino board is affixed 

to the aircraft via mounting screws. The screws were already in use to hold the top carbon fiber 
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plate to the aircraft. To install the peripherals to the mount, a press-fit style installation was used. 

This style was chosen because it provided secure installation during flight and easy removal 

during service, maintenance, or removal. While inverted flight was not a consideration in any of 

the flight modes of this aircraft or project, the mounts proved robust enough even during periods 

of aircraft inversion, such as accelerometer or compass calibration.  

 

The Arduino board is mounted just above the Pixhawk, and directly behind the PWM board. 

When installed, the Pixhawk does not usually require regular access. Mounting the Arduino on 

top of it reduces the ease of access to the Pixhawk. This proved to be a suitable solution though, 

because the Arduino required more frequent access in order to troubleshoot as well as plug wires 

into. This proved an adequate location that maintained low profile while allowing very easy 

access.  

The breadboard, used for handling power and signal distribution, is mounted directly behind the 

differential sensors on the top of the aircraft. It is mounted in a position where it is fairly close to 

all components including the PPM sum receiver to allow for short wiring requirements between 

individual components.   

All of these added components and mounts did add weight to the aircraft; however this did not 

affect the overall flight characteristics of the drone. The Pixhawk is designed to compensate for 

any change in weight balance, and while the added weight shift is believed to be minimal for this 

size of drone, the Pixhawk managed to compensate without issue. The drone also did not exhibit 

Figure 35 - Control and Sensing system mounts with their corresponding hardware in place 
Image courtesy of Ryan Sass, Santa Clara University 
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any signs of reduction in movement agility. 

The motors still provided a substantial 

amount of lift, translating to strong control 

authority of the drone.  

3.4.7. Pixhawk Flight Mode  

For this system to operate, the Pixhawk 

must be set to STABALIZE flight mode 

during the duration of flight. This includes 

when operating in either manual or 

automated control modes. Only in 

emergency situations was the LAND mode 

ever used.  

3.5. Electrical System Wiring and Layout 

3.5.1. Power and Grounding 

 There are two main sources of power for this drone. The primary source of power comes from 

the large 14.8V Lithium Polymer battery. This battery supplies power to the 8 motors and the 

power module, which generates 5V for the Pixhawk, the RC receiver, GPS and compass, 

telemetry antenna, PPM sum receiver, and RC receiver. The other power supply is the 9V battery 

that powers the Arduino. The Arduino‟s regulated 5V output powered the two Lidar sensors, the 

PWM board, and the SD card board.  

While the 14/5V Pixhawk and aircraft electrical systems are almost completely isolated from the 

Arduino‟s 9/5V supply, there is still signal sharing between the PWM board and the PPM sum 

receiver. This means that the two systems must be grounded together in order to have proper 

signal voltage levels.  

To achieve proper grounding, the negative contacts on the RC receiver, which receive power and 

ground directly from the PPM sum receiver, are connected to the ground on the bread board, 

which is connected to the PWM board, as well as the Arduino, Lidars and SD card reader board. 

While all the components are essentially grounded to one another, there might be a difference 

between ground of components on the far end of the ground loop circuit. Most importantly 

however, the ground between the PWM board and the RC receiver, the two components that 

send similar data signals from different sources of 5V power are grounded almost directly 

together. This was specifically chosen to provide the shortest grounding path between the two 

components for clarity with each signal being generated. It proved to be successful for signaling 

purposes as the PPM sum receiver recognizes both signals without any notable issues.  

While power directly from the drone‟s battery, ranging from 13.5V – 16.5V, was considered as a 

possibility for powering the Arduino (it can accept up to 20V), it did not prove to be regulated 

Figure 36 - Components mounted to the aircraft 
Image courtesy of Ryan Sass, Santa Clara University 



 

Page | 27  

 

Figure 38 - Power and ground wiring schematic 
Image courtesy of Ryan Sass, Santa Clara University 

properly or provide stable 

enough results with the 

Arduino‟s 5V regulated 

output. Therefore, while 

future modifications should 

include an improved power 

supply for the Arduino 

control loop assembly, 9V 

power is used for this project 

and worked satisfactorily.  

3.5.2. Arduino Wiring 

The Arduino was the main 

component that powered 

most of the other controller components, as well as sending communication signals to each of 

Figure 37 - Arduino board wiring 
Image courtesy of Ryan Sass, Santa Clara University 
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these components. With the exception of the SD card, most of the wiring for the Arduino is 

connected to a breadboard so that power and communication signals are easily distributed to 

other components. The Arduino communicates with the PWM Board and the Lidar sensors via 

I2C, which requires Power, Ground, SCL, and SDA connections, all of which can be connected 

together, since individual communication is done via 

addressing for I2C. The SPDT switch is the signaling 

switch to indicate when to record and stop recording data 

to the SD card board.  

Also, a universal indicator light, powered through pin 31, 

is attached to the board directly. This will be described in 

more detail in Section 3.5.6, but was used for in-flight 

trouble shooting, and ultimately indicates the status of 

pitch control in the final version of the software.  

3.5.3. PWM Board Wiring 

The PWM board requires simple connections to the 

Arduino, as it only needs power, ground, and SCL/SDA 

connections for I2C. With the exception of ground (for the 

sake of shorter wiring), all the wires from the PWM board run directly to the breadboard, since 

all connections to the PWM board are shared with other components.  

Wiring of the PWM output pins are also connected to the breadboard, where they are routed 

through the DPDT relay.  

3.5.4. Lidar Wiring 

The Lidar is wired in a similar fashion to the PWM 

board. All the connections, including the PWR EN 

connections, go directly to the bread board. The 5V, 

GND, SCL, and SDA connections are related to I2C 

communication.  

Since each sensor had 5 connections (PWR, GND, SCL, 

SDA, PWR EN), all but the PWR EN connections are 

shorted together and treated as 1 sensor input. This 

proved better space efficiency for wiring on the 

breadboard. The PWR EN wiring had to be treated 

independently because each signal is used for changing 

the addresses of the Lidar sensors for I2C 

communication, and are specifically used when multiple 

sensors are connected using I2C communication.  

Figure 39 - PWM Board Wiring 
Image courtesy of Ryan Sass, Santa Clara University 

Figure 40 - Lidar Wiring 
Image courtesy of Ryan Sass, Santa Clara University 
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3.5.5. Breadboard Wiring 

The breadboard is the junction between many components. Connections of power or signal 

included the Arduino, Lidar Sensors, PWM Board, RC Activated switch, DPDT relay, PPM Sum 

receiver, and RC receiver. The connections of +5V, GND, SCL and SDA all arrive at this board 

to be connected to other components.  

The grounding of the RC receiver to the Arduino/ PWM Board ground is also wired here.  

This is also the location of the Arduino automation control light, which provides visual feedback 

to the user that the Arduino has taken control of the yaw and pitch axes of flight.  

 

  

Figure 41 - Breadboard Wiring 
Image courtesy of Ryan Sass, Santa Clara University 



 

Page | 30  

 

3.5.6. LED Indicator Lights 

There are two LED indicator lights on the aircraft. Each is designed in a similar manner but each 

are meant to indicate two separate pieces of information. Both are red LED‟s, and are connected 

to 5V in series with a 1 kΩ resistor. This gave the user visual binary feedback to confirm states 

of the aircraft during flight.  

One indicator light is the automation indication light. This 

light illuminates when the DPDT relay is active. The light 

is an indicator that the DPDT relay‟s NO switch contacts 

are closed, and the Arduino is in control of the pitch and 

yaw axes. This allows visual feedback of when the aircraft 

is operating in automation and when it is not. The power 

supplied to this light comes from the Arduino and travels 

through the RC activated switch SPST contact. This design 

was chosen in the event of Arduino failure or RC switch 

failure; the light will always provide accurate feedback of 

the state of the relay. If the light is active, the relay is too. 

This light is mounted to the breadboard directly. The 

wiring for this light can be seen in Figure 41. 

The second indicator light is the universal indicator light, 

mounted directly to the Arduino. This light, connected from digital pin 31 to ground, will 

illuminate when certain flight conditions are met. This provided feedback of the state of the 

control system under certain flight conditions in the dynamic test environment. This light is 

considered universal as it is user programmed to indicate any single parameter the user can 

choose. Over the course of its use, it reported state of things including excessive yaw drift, 

sensor read error, set point or deadband locations, and 

pitch control active/inactive. The light can only be used to 

indicate one status, and its state has to be known ahead of 

time when the Arduino was programmed to be understood 

or useful. The wiring for this lights can be seen in and 

Figure 37.  

3.5.7. DPDT Relay and RC Activated Switch 

It can be seen how the RC activated switch and the DPDT 

relay are connected.  All the wiring for these devices is 

connected through the bread board, with the exception of 

the AUX 1 channel from the RC receiver. This connection 

provides the RC activated switch the RC PWM signal and 

is connected directly to the RC receiver.  

Figure 42 - DPDT relay and RC 

activated switch wiring 
Image courtesy of Ryan Sass, Santa Clara University 

Figure 43 - PPM sum receiver and RC 

receiver wiring 
Image courtesy of Ryan Sass, Santa Clara University 
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3.5.8. PPM Sum Receiver and RC Receiver Wiring 

The PPM sum receiver is the device that takes 8 PWM signals, commonly generated from the 

RC receiver, shifts and combines them into one signal that the Pixhawk then reads. The PPM 

sum receiver receives power and ground from the Pixhawk directly, and supplies the RC receiver 

with power and ground. The PWM sum receiver has 8 input channels to accept incoming signals. 

The Pixhawk expects that the assignment of signals for the first four channels is as follows:  

1. Roll 

2. Pitch 

3. Throttle 

4. Yaw 

The rest of the 4 auxiliary channels can be assigned to any number of switches or dial on the RC 

transmitter, depending on the configuration of the Pixhawk and the aircraft. One important 

channel to note is Channel 5. This channel of the PPM sum receiver is the indicator channel to 

the Pixhawk about what flight mode the Pixhawk should be operating in. Based on the 

configuration of the Pixhawk, up to 7 different user assigned Pixhawk modes can be selected 

depending on the RC duty cycle of the signal going into Channel 5.  

For this project, this channel 5 signal was assigned to a 3 position switch that the RC receiver 

output on its AUX 3 channel. Originally the project intended to utilize three different flight 

modes: Land, Stabilize, and Alt Hold. Ultimately the Alt Hold mode was removed from the 

selection and Stabilized mode was assigned in its place.  

Most of the signals from the RC receiver are wired directly to the PPM sum receiver with the 

exception of ELE, RUD, and AUX 1. ELE and RUD (short for Elevator – the control signal for 

pitch – and Rudder – control signal for yaw) are wired to the breadboard along with Channels 2 

and 4 from the PPM sum receiver. AUX 1 channel on the RC receiver is wired directly to the RC 

activated Switch.  

3.5.9. SD Card Board Wiring 

The SD Card Board was wired directly to the 

Arduino. It included digital pins 50 – 53 for 

communication, as well as +5V and GND. Also, a 

SPDT switch was attached to the Arduino connecting 

either +5V or GND to digital pin 17 in order to signal 

the SD card to write data or to stop writing data and 

complete the creation of the file. This switch is 

important to toggle; after flight data was recorded on 

the SD card, the file had to be finalized in order to be 

a functional, usable file.  

Figure 44 - SD Card Board Wiring 
Image courtesy of Ryan Sass, Santa Clara University 
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3.6. Software Design and Flow 

3.6.1. Introduction 

The software developed for this project was written for the Arduino, however small parts of 

software configuration are required for the Pixhawk as well.  

The bulk of the code was developed to be compartmentalized for easier understanding, as well as 

easy alteration as the code developed during flight testing.  

While a the majority of the code was created and developed as an individual effort, the software 

to handle the data writing to the SD card reader board integrated into the final software was a 

joint development effort, with software creation to handle SD card interface handled by Ryan 

Cooper from Santa Clara University. 

Evolution of the software was numbered in versions. The primary number of the software 

indicated the following development notes:  

1. v0.x – Experimental and Early Stage Software. Intended for development of each 

different part of the software, and not intended for complete automated control.  

2. v1.x – First control iteration of combined automated pitch and yaw control. Pitch and 

Yaw control worked in a gating manner – i.e. the yaw control loop would align the drone 

to the wall then stop executing and the pitch control loop would then distance the craft 

from the wall. Any deviation from the yaw error deadband during pitch control would 

terminate the pitch control loop and execute the yaw control loop again until back into 

the yaw error deadband. 

3. v2.x – Second control iteration of automated pitch and yaw flight. Pitch and yaw control 

worked simultaneously.  

4. +v2.5 –Control loop flight software including SD card writing software added 

5. v2.6 – Final version of the code used for this project.  

In the following sections, the individual aspects of the software are described more in detail.  

3.6.2. Arduino Software 

The Arduino software was written to handle the dual control loops execution, the sensor input 

handling, the output signaling, data recording, and processing the control algorithms.  

The Arduino software is very simple in its implementation. Upon powering the Arduino, a one-

time „setup‟ command list is executed. Then, an eternal looping „loop‟ command list is executed 

again and again. The loop command list will continue until either a reset is initiated or power off 

occurs.   

The software for the control loop was simple to process. It includes pinging, reading, and 

processing the input from the Lidar sensors. Calculations including averaging the input signals 
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and calculating the yaw angle offset occur. It will also calculate if the pitch control loop should 

be executed for the loop iteration or set the pitch control signal to neutral. It then initiates an 

iteration of the yaw control loop to determine the yaw output value. Then, depending on if the 

pitch control loop can execute, it performs an iteration of the pitch control loop. If the pitch 

control loop cannot execute, the pitch control output value is set to neutral. Finally, the software 

pings, and sets the output PWM values for the yaw and pitch control signals that were calculated 

by the control loops. This loop is executed in a matter of milliseconds and is then repeated again 

and again.  

3.6.3. Main Code Flow 

The overall flow of the software was developed to be incredibly basic. In the Arduino code, there 

is a “setup” routine that is performed once at the start of every power up or reset cycle, and a 

“loop” routine that is executed indefinitely until a reset or power off occurs.  

The setup routine of the code involves loading proper libraries, initializing variables and arrays, 

configuring certain Arduino I/O pins and configuring the addresses for the Lidar and PWM 

board, establishing PWM output frequency, and initializing the SD card for file writing.  

The loop routine of the code is where the control loops are executed, the Lidar are used to take 

measurements, and distance and angle values are calculated. Throughout the looped code there 

are small lines of execution for the SD card software to write data during execution. The basic 

flow is as follows:  

1. SD Card Data write and switch check 

2. Lidar Sensor Read and Signal Processing 

3. Yaw Control Loop Iteration 

4. Pitch Control Loop Iteration OR Set to Pitch Neutral (depending on the state of the yaw, 

as determined in the Lidar Signal processing) 

5. Set PWM board output Values 

Once an iteration of this loop is executed, the Arduino will start again from the top of the list and 

run through these functions again and again, until a power off or reset. The control signals are 

continually sent out, regardless of if the user has switched to automated control or not. In this 

way, there is no need to sync the Arduino with the RC activated switch or delay for initialization 

when automated control is desired. The signals are just routed to the DPDT switch and channeled 

to the PPM sum receiver when the user switches to automated control.  

3.6.4. Lidar Sensor Read and Signal Processing 

The Lidar sensor read function will take five sensor reading values from each sensor, with a 2 

millisecond delay between each reading. It will average each respective sensor‟s value based on 

the five readings. The number value each Lidar sensor returns after a measurement is the amount 

of centimeters, in straight line distance, to the object the light reflected off of.  
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After obtaining average sensor values, the two signals go through processing in order to 

determine distance, angle, and yaw state. First, the distance is determined, simply by taking the 

average the two Lidar sensor signals. While this is error in this method of distance calculation, as 

the drone is actually slightly closer than the given average reading values (due to the angular 

shift of the sensor package), the difference between the actual distance and the calculated 

distance the aircraft is from the wall is small enough to be considered negligible.  

Next, the angle of the yaw is calculated. This calculation is described in greater detail in Section 

3.2.1. With the angle and distance determined, error checking is performed on the two sensors, 

checking for conditions where pitch control should be disabled for aircraft safety and stability in 

unusual flight situations. These conditions that are checked are as follows: 

1. Distance to the wall is less than 250 cm (Too close) 

2. Distance to the wall is greater than 1250 cm (Too far away) 

3. Any sensor returning a negative value (Usually not reading off the wall, and not getting 

proper measurements from the sensor) 

4. Calculated yaw angle is greater than 40° to the left or right. (Too mis-aligned from a wall, 

pitch control would not be a safe mode of operation because of the lack of clear space to 

move laterally).  

If any of these conditions are met, pitch control is disabled so that a user may take control of the 

aircraft if during these conditions the drone is in an unsafe orientation or flight condition (i.e. 

drifting rapidly towards or away from an obstacle).  

3.6.5. Control Loops  

The control loops perform one iteration during each execution of the Arduino‟s “loop” routine. 

The yaw control loop operates indefinitely, and there are no conditions under which the yaw 

control will stop operating. The pitch control loop, however, does have conditions, described in 

Section 3.6.4, during which it will and will not operate for flight safety considerations. This 

allows the pitch control to not fly the aircraft in an unsafe manner during bad sensor readings.  

The yaw control loop compares the current yaw angle to a hard coded set point, in this case,  

0° yaw angle. Knowing yaw direction with respect to the wall, based on which sensor reading is 

larger than the other, the control loop will executes a deadbanded, limited, proportional control 

iteration to correct this yaw error.  

The pitch control loop compares the current distance of the aircraft from a given set point, in this 

case, a hard coded 670 cm distance from the wall. Knowing the aircraft‟s current distance as well 

as its approximate distance from the last iteration, it executes a deadbanded, limited proportional 

and limited derivative control loop iteration to correct this error. Unlike the proportional control 

portion of this loop that gives the drone and increase in signal to return to the set point as the 

drone moves further away, the derivative term actually opposes the proportional control input, 
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thereby controlling the speed by which the drone will approach the set point and reduces set 

point overshoot.  

More details of these control loops are discussed in Section 3.2.  

3.6.6. PWM Output 

The PWM output function is a very simple routine. Having the current pitch and yaw control 

adjustments calculated by the control loops‟ execution, the PWM output function adds these 

adjustments to the neutral output value to give a proper control signal output value. For the pitch 

command, a hard coded added „trim‟ value is included to this addition which helps compensate 

for the natural forward or backward drift of the aircraft. This value is determined during flight 

tests of the aircraft flying with neutral commands.  

This function follows the following calculations to determine output values:  

                                                        

                                                                      

Once these values are set, the function then calls the PWM board to update the PWM output 

values, and the signals then can travel to the PPM sum receiver for a change in flight control.  

3.6.7. SD Card Read/Write 

The Arduino sends data to an SD card breakout board using the Serial Peripheral Interface (SPI) 

protocol. The breakout board writes this data onto an installed SD card. To keep the SD file 

operations simple, the file names generated on the SD card are limited to a few characters, in this 

case assigning each successive filename a number. Filenames would always be an increment in 

numbering from the previous created file. Once the file is created, the Arduino can continuously 

write data to the file on the SD card. The most important file operation, though, is closing the file 

to ensure generated data will be properly saved prior to the Arduino powering off. A SPDT 

switch was used to indicate when the Arduino should initiate commands to close the file in order 

to retain all the data.  

3.6.8. Pixhawk configuration 

The Pixhawk must also be configured to operate with the Arduino, otherwise the input controls 

will not function as expected. Using the Pixhawk software, called Mission Planner, to set up 

complete calibration for the drone – including accelerometers, compass, GPS, ESC‟s, radio, and 

battery monitor - a few other things need to be configured.  

First, the stability control rates for pitch and roll can be tuned on the Pixhawk for a snappier or 

softer feel as the drone flies. These values were tuned to be more on the soft side, as the primary 
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mode of flight for this drone was in a small space indoors and fast, rapid movements while under 

automated control was undesirable.  

Second, the flight modes need to be configured to one of the RC transmitter switches in order to 

communicate to the Pixhawk which mode to operate in. Also, the flight modes needed to be 

assigned so that the Pixhawk will operate in a non-GPS required mode (such as Stabilize). This 

allows the drone to take off and fly. If in a GPS required flight mode, the drone will refuse to fly 

until a GPS connection is established. 

Finally, the battery failsafe should be configured so that the drone doesn‟t run through the 

entirety of the batteries prior to landing as well as protecting the integrity of the batteries. Due to 

the nature of a drone, no autorotation can occur, so if the motors all stop due to battery failure, 

the drone will fall directly to the ground.  

3.7. Data Collection and Processing 

The data logged to the SD card during test flights included the following five values:  

1. Elapsed time in milliseconds  

2. Readings from both the left and right Lidar sensors 

3. Yaw and pitch control output values the Arduino calculated  

These values were continually logged, updating approximately every 200ms. This update time 

reflects the total time to not only log the data, but process the control loops, read the Lidar data, 

and update the PWM board as well.  

Once data was recorded and finalized after a test flight, it was transferred off of the SD card to a 

computer. From there, the delimited file could be reviewed using a program such as Microsoft 

Excel. 

3.8. Pixhawk Flight Modes, Failsafes, and Parameter Settings 

3.8.1. Pixhawk Firmware and Interface 

To send parameters and update values for the Pixhawk, Mission Controller, a software interface 

specifically developed to interface with the Pixhawk, is used to set any values or parameters 

requiring adjusting (such as flight modes, failsafe modes, or stability control parameters). These 

values are updated by connecting the computer to the Pixhawk via telemetry antenna or USB.  

The Pixhawk firmware was not directly used in terms of this project, but was used for Pixhawk 

and drone configuration. The Pixhawk firmware has multiple levels of operation, but the two 

important ones to worth noting are flight control and flight operation firmware.  

The flight control firmware deals with controlling the motors of the aircraft in order to maintain 

stable control of the aircraft. Multiple parameters are specified to the Pixhawk, including the type 
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of aircraft, number of motors and motor orientation. With the integrated accelerometers in the 

Pixhawk, it calculates how the Pixhawk should be oriented to achieve stable level flight, and 

then calculates – based on its assumed flight frame and shape and motors controlling – what 

control signals to provide each motor to achieve the proper flight orientation. It then uses control 

loop feedback to correct the motors it controls in order to achieve actual level flight.  

The flight operation software works on top of the flight control software. This software works to 

actually allow the drone to be controlled, either flying autonomously with preset missions loaded 

on the Pixhawk or by manual control. In manual control, the Pixhawk will adjust the motors 

based on the 4 axes of flight control to produce the roll, pitch, yaw, and thrust performance that 

the user commands.  

In the Pixhawk firmware, there is a lot more sophistication, automation, and features that will not 

be discussed but are useful. However, another important note includes the failsafes the Pixhawk 

can monitor, including low battery or failed sensors. In the event of a failsafe, the Pixhawk will 

control the throttle to bring the aircraft to the ground in a safe, controlled descent. It does not, 

however, control any of the other axes of flight, and they remain under manual user control.  

3.8.2. Flight Modes 

Flight modes can provide a good failsafe in the event of unsafe flight operation. Originally, the 

intended operation of this aircraft was to operate in one of three modes, and the signal to switch 

between them was assigned to a switch on the RC transmitter that has three positions. These 

modes included:  

1. Land –bring the aircraft to the ground in an expedited but controlled descent. Throttle 

input is automatically set, but roll, pitch, and yaw are still under user control.  

2. Stabilize – the aircraft will maintain straight and level flight until manual input is 

received from the transmitter. All 4 axes of flight are under manual control. Upon 

returning roll, pitch, or yaw axis controls to a neutral position, the aircraft will return to 

level flight, although drift may occur.  

3. Altitude hold – similar to Stabilize flight mode, however throttle is controlled to hold a 

given barometric and/or (if enabled) GPS calculated altitude. Roll pitch and yaw control 

is still enabled, and throttle is automatically adjusted when these flight inputs affect 

altitude.  

While altitude mode was ultimately removed for this project due to the lack of ability to test the 

robustness and reliability of the flight mode, each mode listed above was a failsafe for the mode 

that succeeded it. So, if in altitude mode, the user can switch to manual mode and take control of 

throttle once again. In the event of an unsafe flight mode in manual mode, the user can switch to 

land mode, and the aircraft will attempt to rapidly but safely descend to the ground. This should 

reduce the chance of a crash landing if the user would have difficulty in landing the aircraft 
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manually, such as if in a difficult flight situation or when close to obstacles during an emergency 

landing.  

3.8.3. Important Pixhawk/Mission Planner Parameter Settings 

The most important parameter setting is the battery failsafe. It must be configured to the proper 

monitor and set to monitor voltage and amperage. This will protect the drone from destroying 

itself or the battery failing mid-flight. For a battery failsafe, the LAND mode is automatically 

activated, and the reserve battery power was set to the lowest value (1000 MAH), as flying 

within 3‟ to 8‟ of the ground required little power to accomplish a fast landing.  

Another important set of parameters to check is ensuring the motors of the drone operate in their 

assigned position. This check is important to perform, with the propellers off, when initially 

installing a Pixhawk to the aircraft.  

Lastly, the roll/pitch sensitivity was tuned to very low values (0.1159) in order to keep the 

drone‟s roll and pitch rates low. Also, the throttle hover setting was set to a mid-level value (500) 

in order to reduce the sensitivity of the throttle was performed. In this case 
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4. Testing 

4.1. Introduction 

Testing for this project was conducted to prove the concept and feasibility of operation. 

Therefore, the parameters for final flight performance were defined to prove that a 

microcontroller could achieve autonomous control of a drone. The following performance 

objectives were set for development and testing:  

 Demonstrate Aircraft Control of yaw and pitch axes using control loops. 

 Demonstrate Yaw Control within ± 20° from normal.  

 Demonstrate Pitch Control within ± 3 ft. of a given set point.  

Throughout the course of the school year, testing varied as the project developed. During the fall 

quarter, testing efforts were directed to prove the overall design of the control loop assembly 

could successfully recognize a wall and exhibit motor reaction on the then propeller-less drone as 

the orientation of the wall to the aircraft changed.  

Testing efforts during winter quarter were to prove the operation of the control loops on a 2 

dimensional vehicle – in this case on a rover bot. This allowed for design verification of the 

general control loop theory, electrical, and software aspects of the project prior to equipping and 

testing a drone.  

Finally, efforts for testing during spring quarter involved proving successful automated flight of 

the drone and demonstrating basic control loop response in the yaw and pitch axes.  

4.2. Fall Quarter – Demonstration of Project Feasibility and Limited Operation 

The first phase of testing for this project involved demonstrating project feasibility. This 

included proving that hardware choices selected were capable of performing as required. Also, 

signs of control reaction of the drone motors needed to be demonstrated. The specific list of 

objectives for project feasibility for the fall quarter included:  

1. Demonstrate multiple Lidar Sensors can operate and provide accurate data when 

connected to an Arduino.  

2. Demonstrate output of a PWM signal from the Arduino with proper RC frequency and 

duty cycle.  

3. Demonstrate signal compatibility between the PPM sum receiver/Pixhawk and the 

Arduino. 

4. Demonstrate yaw control loop reaction.  

5. Demonstrate Arduino control of the drone. 
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To accomplish these tasks, extensive research on 

the Lidar, Arduino, and Pixhawk components were 

conducted. Characterization of the RC receiver‟s 

PWM signals was required in order to determine 

what the Arduino must produce to match the RC 

signal and reduce the chance of signal rejection 

from the PPM sum receiver. Finally, three 

different batteries of tests were conducted:  

 Arduino and Lidar testing – conducted via 

Serial port feedback on a computer.  

 Arduino PWM and PPM Sum testing – 

conducted via Mission Control software feedback to observe input control signals.  

 Arduino and Drone control testing – conducted with the propeller-less drone, a movable 

wall, Mission Control software feedback, Serial Port feedback, and audible feedback of 

the motors.  

The results of these tests were overall a success. The following notes for the five objectives of 

fall quarter include:  

1. Demonstrate multiple Lidar Sensors can operate and provide accurate data when 

connected to an Arduino. : Success. Using I2C communication and specific channel 

address wires it is possible to operate two Lidar sensors and proves very reliable.  

2. Demonstrate output of a PWM signal from the Arduino with proper RC frequency and 

duty cycle. : Limited success. The output of the Arduino board can output PWM signals 

tuned to RC frequency and duty cycle, however because of the limited resolution of the 

Arduino, finer resolution would be better for more precise control.  

3. Demonstrate signal compatibility between the PPM sum receiver/Pixhawk and the 

Arduino. : Success. The Arduino can produce signals that are compatible and are 

recognized by the Pixhawk.  

4. Demonstrate yaw control loop reaction. : Success. During physical testing of the 

Arduino, Lidar, and drone, the drone exhibited sounds of changing motors when the 

movable wall was rotated between normal to the aircraft and angled. This gives 

indication that the yaw control loop was reacting to the changes in orientation to the wall.  

5. Demonstrate Arduino control of the drone. : Success. The Arduino can exhibit control 

over a drone.  

The success of these tests show the feasibility of the project, as the hardware was proven at 

varying degrees of functionality. Because the next steps in development were proving control 

loop operation on a two dimensional vehicle, the first phase of testing helped set up the 

foundation for what the following quarter‟s tests would use to function.  

Figure 45 - The drone configured for the Arduino 

and Drone control testing phase, wiring not yet 

installed 
Image courtesy of Ryan Sass, Santa Clara University 
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4.3. Winter Quarter – Demonstration of 2D Operation 

The second phase of testing for this project involved demonstrating simulated operation of the 

drone to prove successful operation of the hardware. This allowed development of the Arduino 

control loops in a more forgiving and controlled environment, in this case operating in just the 

two dimensions of control intended. It also facilitated higher factors of safety in the preliminary 

stages of the control loop development. This was beneficial as when flight testing occurred, the 

basics of the control loop were already proven to be functional. The list of objectives for this 

quarter to demonstrate project operation included:  

1. Mount the Arduino control loop hardware, including the Pixhawk, on a BOE robot and 

demonstrate autonomous vehicle control.  

2. Demonstrate incorporation of new PWM board into hardware operation.  

3. Demonstrate execution of yaw and pitch control loops operating in unison.  

4. Prove control loop repeatability and robustness.  

To accomplish these tests, a Board of Education (BOE) robot was used. This vehicle is a three 

wheeled, two independent wheel drive rover with a flat top to allow for payload mounting. The 

robot can simulate yaw of the drone by operating the two motors in opposition to one another. 

When the two drive wheels spin in opposite directions, the vehicle spins just as the drone would 

yaw. When the two wheels spin in unison, it simulates the pitch movement by moving forward or 

backwards.  

BOE bot required heavy modification in 

order to contain the electronics of the project, 

mount the Lidar Sensors to the robot, mount 

the motors in the same orientation, and 

establish a long enough umbilical cord to 

deliver power. This required special wiring 

for the umbilical cord, as well as heavy use of 

3D printing to develop specially fitted 

mounts. The mounts created included the 

Lidar holder, a „stack‟ to house the Arduino 

and Pixhawk, and a special motor mount for 

one of the motors. These special wheel motor 

mounts were created in order to operate both 

motors in the same direction to achieve 

forward motion.  The basic shape and design 

of the Lidar mounts carried through the 

project‟s development.  

Control output had to be slightly altered in 

Figure 46 - The testing platform for winter quarter including 

the BOE robot and capstone project components integrated 
Image courtesy of Ryan Sass, Santa Clara University 
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the software to achieve proper simulated pitch and yaw commands. Since both commands 

required operating the motors either in unison or in opposition, this required control loop outputs 

to be specially altered before sending the PWM output signal so that proper movement was 

achieved.  

The PWM board used for this project was incorporated into this phase of testing in order to 

provide finer resolution of output signal change. Confirmation of the resolution of the PWM 

board‟s operation was conducted with a digital oscilloscope.   

The results of these tests were an overwhelming success. The following notes for the four 

objectives of winter quarter include: 

1. Mount the Arduino control loop hardware, including the Pixhawk, on a BOE robot and 

demonstrate autonomous vehicle control. : Success. All components were mounted, and 

all components could successfully work in unison to make the BOE robot operate as 

desired.  

2. Demonstrate incorporation of new PWM board into hardware operation. : Success. The 

new PWM board relieved processing time of the Arduino software as well as provided 

much greater resolution when changing PWM signals. It improved resolution by a factor 

of about 15.  

3. Demonstrate execution of yaw and pitch control loops operating in unison. : Success. The 

two control loops, while being gated, both worked very well and control to a set point 

within a few inches.  

4. Prove control loop repeatability and robustness. : Success. The BOE bot exhibited very 

robust and accurate control that was repeatable and fairly robust. The robot could be 

turned left or right of the wall, and near or far, in any combination thereof, and the robot 

would correct its „yaw‟ and then proceed to move to the deadbanded set point.  

These tests proved that the control loop algorithms and hardware could successfully exhibit 

control over a vehicle, and that controllability of an aircraft was definitely possible, and that 

the Arduino control assembly was ready to be installed and tested on a drone aircraft.  

4.4. Spring Quarter – Demonstration of Flight Operation 

The final phase of testing was demonstration of flight operation of the Arduino control assembly. 

It involved a lot of objectives as this was the first time the aircraft was to be flown under 

automated control. The list of objectives for this quarter to demonstrate flight operation included: 

1. Mount and equip the aircraft with all components in a secure, but accessible manner for 

flight operations, service, and data upload.  

2. Develop a safe plan of operation for test flight development.  

3. Establish data recording of control loop parameters. 

4. Establish Arduino Control of the drone. 
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5. Demonstrate Arduino control loop control of the aircraft. 

6. Demonstrate Arduino signal error rejection. 

These objectives will be described in more detail in the following sub sections. This was the file 

phases of testing and development. The testing performed here was described in deep detail in 

the hopes that future development on this project can benefit from the testing, lessons, and 

success achieved here.  

4.4.1. Objective 1 - Mount and equip the aircraft with all components in a secure, but 

accessible manner for flight operations, service, and data upload. 

One of the most visible pieces of equipment on the drone, and the largest mount was for the 

Lidar sensors. The Lidar mount went through an initial design iteration with the assistance of a 

team of undergraduate students. The alignment and general shape of this mount was established 

in this initial phase, but other design choices were ultimately rejected as they lacked ease of 

access for service or adequate security.  

Initially, the Arduino board was slated to be mounted just beneath the Lidar sensors. However 

the amount of wires and the style of wiring gave rise to a high risk for propeller strikes, either by 

falling out of their connection with an upside-down mounted Arduino, or by just general spacing 

of the wires. This upside-down mounting of the Arduino also proved difficult to remove the 

Arduino board for service, so the Arduino board mounting location removed from the Lidar 

mount and placed elsewhere with a separate mount.  

The Lidar mount also initially had two fins that straddled the top and bottom part of the nose of 

the drone; however this proved difficult to mount, so the fit to mount to the top of the aircraft 

was strengthened, while the bottom piece of the mount was removed from the design. Also, slots 

for the mount were substituted for holes. This allowed for greater simplicity of installation for 

the three bolts that hold the mount in place.  

The undergraduate team also designed the mount for the PWM board. This design proved very 

suitable, as it was stable, easy to install, located well, and did not pose any shorting risk on the 

mount it was located.  

The Arduino board mount was chosen to sit on the top of the aircraft behind the Lidar and PWM 

mounts. The mount was designed in a minimalist style, and had the same push-mount style of 

board attachment that the PWM mount had. The mount fits screw holes already existing to hold 

the top plate to the aircraft. The wiring for the control loop package was trimmed and secured so 

that it would not easily come loose, and did not have enough flex or movement to swing 

anywhere near the propellers. The breadboard was attached on an open area of the Lidar mount 

where it was easy to access and helped keep the wiring distances between each peripheral as 

short as possible. 
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With the current positions of the Pixhawk and Arduino, it‟s easy to see and access the Arduino 

pins, see the Pixhawk state indicator light, as well as attach USB plugs to Arduino and Pixhawk 

for data upload. Removal of the Arduino or PWM board is as easy as pulling upwards.  

Therefore, achieving the task of mounting and equipping the aircraft with all components in a 

secure, but accessible manner for flight operations, service, and data upload is was successful. 

4.4.2. Objective 2 - Develop a safe plan of operation for test flight development. 

This objective was developed through trial and error, so throughout the course of testing, three 

flight incidents occurred. However, a lot of procedural steps can be implemented to avoid these 

accidents in the future.  

The first test performed on the aircraft was an anchored flight test to test motor operation and 

control signal outputs. This was done by strapping the drone to a stand and placing it inside a 

secured chamber. Proper control signal response can be confirmed by running the motors and 

observing the motor response. In this way it was learned that inverting the pitch command on the 

transmitter was necessary. This is also an important time to confirm the proper connection of 

each individual motor to the Pixhawk. While it was not known to perform this step, this would 

have adverted two of the flight incidents during this phase of testing.  

 

The first two accidents occurred due to incorrect connection of the motors to the Pixhawk. This 

lead to an unstable aircraft prior to it ever leaving the ground and resulted in two turnovers of the 

aircraft while attempting to lift-off. No amount of user control could have avoided the accident, 

Figure 47 - Automated drone anchored flight tests in flight test chamber 
Image courtesy of Ryan Sass, Santa Clara University 
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only confirming proper connection of the motors to the Pixhawk would have averted these 

incidents.  

Another useful test was the “1-inch flight” tests. A flight “testing pad” was developed to address 

this issue with the aircraft flipping over during lift-off. It was a large, heavy piece of plastic with 

four anchors that the drone‟s 

landing legs could be secured to 

with bailing wire. This allowed the 

aircraft to fly a few inches off the 

ground but not flip over. This 

provided safe troubleshooting of 

the aircraft when its ability to fly is 

uncertain.  

Finally, once the drone could fly 

successfully, tests of the control 

loops were the next steps to 

developing the aircraft. These tests 

were performed in incremental 

steps to ensure that each portion of 

the control loops in the software 

was functioning properly and any 

issues could be resolved, before 

the more complicated aspects of the code were tested. This meant performing the following types 

of flight tests in the following order: 

1. Full manual flight test to establish proper manual control of the aircraft and that all drone 

components operate successfully under actual flight conditions and all control loop 

components are affixed securely to the vehicle.  

2. Manual flight test of DPDT relay operation, with full control in either switch positions of 

the relay. Red indicator light is attached to the relay to indicate the switch. Manual 

control signals for pitch and yaw are connected to each corresponding NC and NO 

contacts on the relay to maintain full control and allow operation of the DPDT relay and 

the RC activated switch in a flight environment.  

3. Manual flight test of DPDT relay operation with simulated automation control. Manual 

pitch and yaw control signals go only to their respective NC contacts on the relay. No 

input control signals go to the NO contacts. Establish manual flight control of the aircraft 

then switch the DPDT relay and confirm loss of pitch and yaw control. Also confirm 

successful relay operation.  

4. Arduino neutral flight test. Establish manual flight, and then switch to Arduino control 

output signals sending neutral pitch and yaw signals. Confirm neutral PWM signals from 

Arduino behave as expected.  

Figure 48 - Drone during "1-inch flight" tests, attempting to tip over. 

Zoomed inset on the left shows a close-up of drone.  
Image courtesy of Ryan Sass, Santa Clara University 
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5. Arduino Yaw Only flight test. Establish manual flight with a slight yaw error and allow 

Arduino yaw control. Establishes Arduino yaw behavior and control for tuning. Full 

manual pitch control authority (similar to test 2) is maintained for safety.  

6. Arduino Pitch Only flight test. Establish manual flight with a distance from the set point 

and allow Arduino pitch control. Establishes Arduino pitch behavior and control for 

tuning without any interruption from the yaw movement. Full manual yaw control 

authority (similar to test 2) is maintained for safety.  

7. Arduino Pitch and Yaw Control. Establish manual flight with distance and/or yaw error 

and allow for Arduino control. This established the full capabilities of this project.  

For many of the type 5 – 7 flight tests, „dry‟ flight tests were conducted. These dry flight tests 

were conducted by placing the drone on a movable cart instead of flying the drone. From there, 

observation of signal input to the Pixhawk from the Arduino by way of the Mission Controller 

software, as well as values internal to the Arduino that were specifically coded to output for the 

dry tests were displayed using serial output on a computer. From here, the movable cart could be 

moved in relation to the wall and the corresponding displayed output commands. This allowed 

some preliminary signal characterization and confirmation of controller behavior to an actual 

flight to reduce the unexpected errors during a live flight.  

While the final flight incident occurred during a type 7 test flight, the plan for operation for test 

flight development was successful enough to avoid any other incidents by flushing out errors far 

before they became issues during flight. The unfortunate mishap occurred, ironically, because 

the failsafe of switching to LAND mode was not utilized and an attempt to recover the aircraft 

under manual control during 

an unexpected flight 

circumstance. Had this 

failsafe been utilized instead 

of opting for manual control, 

the aircraft may have either 

avoided or had a less severe 

incident.  

These operations, including 

failsafes such as the land 

feature for manual control 

intervention, kept 

development of the project 

advancing and a good rate and 

attributed to the project‟s 

success. 

  

Figure 49 - A „dry‟ flight test, with computer connected to observe input and 

output values in real time 
Image courtesy of Ryan Sass, Santa Clara University 
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4.4.3. Objective 3 - Establish data recording of control loop parameters. 

This objective was accomplished later in the development of the project, after the control loops 

were almost fully developed. This actually proved beneficial, as a comparison of flight control 

performance with and without data recording could be compared and the difference was 

determined to be negligible.  

The development of this data recording was done in conjunction with an undergraduate student. 

While the overall code flow was a collaborative effort, the undergraduate student wrote the code 

that accomplished this task. A lot of dry testing was performed to confirm this data recording, 

prior to making live flights with data recording. The results of these tests provide invaluable 

information about the drone‟s performance that the Pixhawk cannot record. The resolution of this 

data is in time steps of 200ms, which is be more than substantial at the moment for the speed that 

this drone flies controlling around its set point. This ability to record data successfully at a fast 

rate in comparison to the drone itself proved this objective was met successfully.  

4.4.4. Objective 4 - Establish Arduino control loop control of the aircraft. 

This objective was completed during type 5 – 7 flight tests as outlined in Section 4.4.2. The 

testing of the Arduino‟s capabilities for drone control prior to these tests was unknown, so there 

was an element of “try it, see, and retune”. The saving grace to establishing the Arduino control 

was the ability to switch back to manual mode in the event of unexpected control behavior. This 

objective was thoroughly demonstrated and successful by the end of this project.  

4.4.5. Objective 5 - Demonstrate Arduino control loop control of the aircraft. 

This objective, while being performed during an array of type 7 test flights, exhibited different 

behavior from the similar simulated tests performed during the winter quarter by the BOE robot. 

Unlike the stationary robot, the drone has more drift in the pitch movement. Also, the aircraft 

could move the sensor into positions that required much more error rejection than was first 

thought to be required during winter tests.  

During the type 7 flight tests, the original control loop design intent was to perform yaw control 

until yaw error fell within an acceptable yaw deadband zone, then stop yaw control by issuing a 

neutral yaw command and execute pitch control until either located within the proper distance 

deadband zone or the aircraft turns out of the yaw deadband zone. This proved problematic 

during actual flight tests, though, as the drone would sometimes find itself just outside of the yaw 

deadband zone while drifting (but not controlling) to or from the set point, and could not exhibit 

pitch control to correct.  

To fix this issue (aside from some control loop tuning), the control loop design was changed to 

perform both yaw and pitch control simultaneously, unless the drone had large yaw error. This 

was decided because in that given situation it would be unknown if pitch control at these extreme 

angles would put the aircraft in an unsafe location to continue pitch control as the drone is 
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moving (i.e. flying the drone 

diagonally towards the wall 

and into an unsafe area as it 

corrects yaw and pitch at the 

same time). Since the 

current suite of sensors can‟t 

identify the drone‟s path, it 

was decided to it was 

decided that the drone will 

only attempt to correct yaw 

at larger error angles until it 

is once again reduced yaw 

error to resume pitch control.  

The data results of the control loops are located in Section 4.5. The data is a clear depiction of 

proportional and proportional/derivative control loops in operation. Both control loops reach 

their set points and maintain their error within the deadband achieving good stability. Therefore, 

this objective was successfully demonstrated.  

4.4.6. Objective 6 - Demonstrate Arduino signal error rejection 

This objective was added after the major flight incident that caused the loss of all 8 flight motors 

and several propellers. Because the aircraft can drift into areas where odd sensor readings can 

occur, it is important to include this type of error rejection so that the drone does not try and fly 

out of control. This is part of the reason that caused the crash. It also demonstrated that it was 

important to have indicator lights to show when the aircraft is within acceptable windows of 

operation.  

Input error rejection was incorporated into the software of the Arduino control loops. This error 

rejection included:  

1. Aircraft distance to the wall is less than 250 cm (Too close) 

2. Aircraft distance to the wall is greater than 1250 cm (Too far away) 

3. Any sensor returning a negative value (Usually not reading off the wall, and not getting 

proper measurements from the sensor) 

4. Calculated yaw angle is greater than 40° to the left or right. (Too mis-aligned from a wall, 

pitch control would not be a safe mode of operation because of the lack of clear space to 

move laterally).  

These modes of flight would stop the execution of the pitch control loop and set the pitch output 

control to a neutral value, allowing either the user to more successfully regain control of the 

aircraft in manual flight mode, or allow the aircraft to resume yaw control until the yaw error has 

been reduced to allow for more successful execution of pitch control.  

Figure 50 - Drone during flight test 
Image courtesy of Ryan Sass, Santa Clara University 
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4.5. Flight Position and Control Loop Performance Data 

The graph in Figure 51 shows the aircraft distance from the set point in blue and the yaw error 

from the set point in red. They are all graphed with respect to time and are normalized values. 

The normalized distance values are displayed on the left vertical axis and the normalized yaw 

angle values are displayed on the right vertical axis. The deadband for the yaw limit is also 

depicted as the horizontal lines in orange, as this control deadband was large enough to be seen 

accurately. The set point for pitch is the horizontal line shown in blue, and for yaw the horizontal 

bar shown in red. 

 The graph in Figure 52 shows the pitch performance, in blue, with the normalized pitch control 

output value, in red, overlaid. The left vertical axis displays the values for normalized distance 

from the set point. The right vertical axis displays the normalized value for control response as 

added to the neutral output command. The pitch set point is the horizontal bar shown in blue. 

Figure 51 - Performance Graph Showing Aircraft Distance and Yaw Offset from Respective Set Points 
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Figure 53 – Performance Graph Comparing Aircraft Yaw Angle Offset from Set Point and Yaw Control Signal Output 
Image courtesy of Ryan Sass, Santa Clara University 

 

Figure 52 – Performance Graph Comparing Aircraft Distance Offset from Set Point and Pitch Control Signal Output 
Image courtesy of Ryan Sass, Santa Clara University 
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The graph in Figure 52 shows the yaw performance, in red, with the normalized yaw control 

output value, in blue, overlaid. The left vertical axis displays the values for normalized distance 

from the set point. The right vertical axis displays the normalized value for control response as 

added to the neutral output command. The yaw angle input deadband bars are also shown as 

horizontal line shown in orange, and the yaw set point is the horizontal line shown in red.  

4.6. Overall Test Results 

The completed result of this project and the battery of testing is the successful demonstration of a 

drone that can automate pitch and yaw control via an Arduino with repeated, stable, and reliable 

results. The aircraft can record its data of performance and can exhibit “plane lock” flight as 

intended, moving up, down, left and right, while maintaining a given distance from the wall. 

From the test results, it can be seen that the current resolution of distance control performance 

from a flat wall is within ±2 feet, maintaining yaw control within ±3° from normal. The drone 

also has built in signal error rejection for safer operation, and the ability to return to manual 

flight control or automated landing for further margins of safety. 

To review and comment on the Project Performance Objectives listed in Section 1.6:  

 Demonstrate Aircraft Control with the use of yaw and pitch control loops. : Success. The 

aircraft can successfully control the pitch and yaw axes using the Arduino control 

assembly developed for this project.  

 Demonstrate Yaw Control within ± 20° from normal. : Success. From the test result data, 

yaw control was maintained within ±3° from normal.  

 Demonstrate Pitch Control within ± 3 ft. of a given set point. : Success. From the test 

result data, pitch control was maintained within ±2 feet of a given set point.  
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Figure 54 - Capstone Project Drone in Flight 
Image courtesy of Ryan Cooper, Santa Clara University 

5. Results, Conclusions, and Future Work Suggestions 

5.1. Results of Development 

The results of the development of this project are very successful in demonstrating the ability for 

a microprocessor to take control of an aircraft and exhibit closed loop control. With the 

exception of a few minor and one major flight incidents, the development of this project went 

smoothly from paper drawings and thoughts to an automated flying aircraft in three quarters of 

development. Each successive quarter resulted in successful advancement that continued the 

project forward in a relatively safe manner to prove successful operability.   

The end result of the project development is a drone capable of automated simultaneous yaw and 

pitch control, resulting in “plane lock” with a wall. With the added error rejection and failsafes 

built in, the drone is a very prolific demonstrator of not only the capabilities of automated drone 

flight, but the potential in the level of control able to be exhibited over a drone. This was the first 

iteration of feedback control with a drone, and the resolution was ±2 feet from a set point, a little 

shy of twice the size of the craft itself, and ±3° in yaw control. With better, more sensitive 

sensors and PWM generators, the level, agility, and resolution of control could be vastly 
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improved. The end result of this project certainly opens the door to further development in many 

different areas.  

5.2. Conclusions of Operability 

From these results, there are a few conclusions we can draw from its performance. It is 

reasonable to conclude that complete flight automation with an Arduino - with the addition of 

more sensors - is possible. It is also reasonable to conclude that the Arduino can execute multiple 

control loops and multiple output signals at an acceptable state of control and resolution. This 

would lead to consideration that flying a drone from a slanted flat surface, such as a roof or 

flying at a given yaw angle from a wall is very possible to implement.  

It can also be concluded that with some precautions, planning, and safety measures, that 

automated object recognition and avoidance control is possible, further giving reason to continue 

development of flying automated drones indoors or outdoors without GPS.  

5.3. Suggestions for Future Work and Development 

While this capstone project unfortunately must come to an end, it does open the door to future 

development, either for this project or similar projects wanting to utilize similar styles of control. 

Below are some of the suggestions for future development of automated drones.  

5.3.1. Suggested Hardware Improvements 

While the hardware used for this project was substantial to achieve project success and produce 

adequate results, there are some comments regarding some of the hardware.  

The Arduino Mega board felt like it was the correct board to use for the maturity of this project, 

however, smaller and/or faster boards might be worth considering. The same capabilities may be 

accomplished with an Arduino Micro or Nano. Or, switching to an Intel Edison board may be a 

better choice for finer control of the aircraft.  

The PWM board vastly improved the abysmal resolution performance the Arduino itself 

attempted to do - by a factor of 15 - however even the resolution of the PWM board was almost 

not fine enough. Because the duty cycle of the RC signal ranges from 5% to 9% to indicate 0% 

to 100% input, the full resolution of the PWM board is not used. Add to this the limiting of each 

control signal in software, and this reduces the usable resolution by almost another 30%. 

Therefore, much finer resolution of output signals may provide more accurate control, especially 

when the aircraft is near the set point and finer control input is required.  

The Lidar sensor package had an offset of 7.5°; however this value should be tooled with to find 

the most optimal offset. Also, while the sensors themselves proved very accurate and fast, 

perhaps a better way of sensing a wall might be considered that can incorporate more 

information regarding the environment the drone is in.  
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Finally, powering the Arduino was performed with a 9V battery; however there is a plug for 

power directly from the aircraft battery that was never implemented to power the Arduino. While 

it was never determined if this power was regulated, it did not prove reliable power when a direct 

connection was attempted. Also, because the power module that connects to the aircraft battery 

that powers the Pixhawk only outputs 5V; this was not deemed a suitable choice for the Arduino. 

Developing a regulated power source from the aircraft‟s battery to power the Arduino and 

peripherals would be beneficial, as dying 9V batteries were a common problem, and resulted in a 

few odd behaviors during test flights.  

5.3.2. Improved Response Time or Narrowing the Deadband 

Improving the response time of the aircraft to reach the set point and improve control 

performance will require some more serious hardware to be able to more carefully tune 

parameters, as well as more accurate ways to read data in order to characterize the performance. 

However, judging by the overall responsiveness of the aircraft, this ability to move faster to the 

set point should be possible either by further tuning the existing hardware or improving the 

hardware as well as retuning.  

To narrow the deadband would be to improve the ±2 feet of slop in the position hold. To be 

clear, the deadband of the implemented control loop was very narrow, but the performance 

resulted in a deadband of ±2 feet. Again, finer resolution of the control signals, as well as 

refined, or possibly different control characteristics when close to the set point might improve 

the ability for the aircraft to maintain control.  

5.3.3. Altitude and Lateral Control 

The next natural step for development of the capabilities of the current hardware of this drone 

would be to include roll and throttle control. The Pixhawk has an ALT HOLD mode; however 

this mode was never tested due to odd aircraft behavior of this mode during testing. While 

tethered to an anchor, it appeared the drone attempted to „fly off‟, revving the motors at 

alarmingly high speeds. After an attempt to demonstrate safe operation while flying on a 5‟ rope 

tether were unsuccessful, due to a perceived lack of safety in the event of a fly off (it appeared 

the drone would hit the end of the tether and proceed to swing along the tensioned tether into the 

ground during light simulations of a fly off), the decision was made to not perform any indoor 

test, tethered or untethered, of altitude hold. Proper testing of this mode should be performed 

outside where there is no ceiling to contend with.  

During most of testing, roll correction was a constant issue, and the drone would drift from side 

to side. Another flat wall combined with a roll control loop would easily solve this drift, as the 

added loop‟s implementation would be nearly identical to the control loop implemented for pitch 

control.  

It would be great to see automation of all 4 axes of flight, allowing complete “hands off” of the 

controls.  
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5.3.4. Adjustable set points 

The RC receiver has a wonderful infinitely adjustable auxiliary dial on it, which appeared to be a 

great way to adjust the set point of the distance from the wall while in flight. Because this project 

was focused on implementing operational success of the aircraft itself, there was not enough time 

to develop a method to implement receiving this signal for this project. It would be great to see 

the aircraft reach a set point and then re-correct to a new set point while in mid-flight.  

5.3.5. Pattern Following in “Plane Lock” 

Now that the drone has exhibited “plane lock” ability, perhaps programming the altitude and 

lateral control to allow the drone to fly in an up-down / left-right style pattern, in order to 

demonstrate automation for things like wall scanning, surveying, or perhaps photography.  

5.3.6. Slanted Plane Control 

Another great development would be to test the control of the aircraft exhibiting “plane lock” 

with respect to a slanted wall, either a roof style plane, or the drone controlling pitch control 

while holding a yaw angle from the normal to the wall. A roof-style plane would require 

implementing simultaneous throttle and pitch control (as well as yaw control still), and a slanted 

wall would require roll and pitch control (as well as yaw control still). Either would require a 

combination of mixing signals to achieve performance.  

5.3.7. +6 Sensor Alignment Control 

This would be an expansion suggested in Section 5.3.2, by adding sensors in both directions for 

roll, pitch, and altitude. Perhaps allowing the drone to shift between controlling distance from 

one side vs. the other (like controlling distance on its left then right side as it travels from one 

area to another), would allow a drone to start safely navigating down hallways and start to 

achieve successful object avoidance by keeping away from the closest object.  

5.3.8. Multi Drone Formation 

Set up two drones to maintain distance lock from one another while performing flight 

maneuvers. This would require much more sophisticated sensing techniques, as well as multiple 

people for development.  
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Appendix 

Project Flight Procedures 

When operating the drone in automated flight mode, it is suggested that the following general 

procedures are followed for safe operation of not only the drone, but the test area. The 

procedures include:  

1. Preflight 

1.1. Observe the flight area. Ensure there is enough area and height in which you want to fly, 

and that user ability will allow for flight error.  

1.2. Determine “no go” or “mandatory manual control and/or land” zones, this will help to 

know when the aircraft still has error margins but must action must be immediately 

taken in order to avoid an accident.  

1.3. Ensure aircraft is properly calibrated, motors are connected properly and motors are 

connected to the correct motor connection. Ensure all components on the aircraft are 

secure for flight and that the propellers can spin freely.  

1.4. Ensure RC Transmitter is properly calibrated, and signals correspond to proper flight 

controls. Ensure all auxiliary signals behave as expected prior to flight.  

1.5. Check battery voltage for aircraft and Arduino. Ensure sufficient voltage, and if using a 

multi-cell battery, cells are balanced.  

1.6. Have a video recorder set up. In the event of a flight incident, video review can assist in 

helping to understand the chain of events that led to an incident.  

1.7. Consider personal safety equipment. Foot and eye protection should be considered.  

1.8. Consider a neck tether for the RC Transmitter, it will allow for better input control by 

not having to support the transmitter weight.  

2. Starting and Liftoff. 

2.1. Have on proper safety equipment for flight, including eye and foot protection 

2.2. Start video recording 

2.3. Plug in Battery 

2.4. Wait for Pixhawk to initialize. A tone and a blue or green blinking light means the 

Pixhawk is ready.  

2.5. Ensure throttle is in the low position and all switches are in their proper place, and then 

power the RC transmitter.  

2.6. Ensure the RC transmitter is commanding the Pixhawk to be in a safe flight mode, such 

as LAND.  

2.7. Ensure switch for SD card recording is in the “LOG” position.  

2.8. Switch power to the Arduino ON 
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2.9. Confirm operation of the automation/manual control switch by toggling. Feedback will 

be a red light illuminating in automation mode, and extinguishing for manual mode. 

Leave in manual mode.  

2.10. Press and hold red flashing safety switch until it turns stable red. The ESC‟s will 

make the motors briefly jump, and a tone can be heard. Motors now have power, but are 

not yet armed or should be spinning.  

2.11. Stand back a good distance from the aircraft. Standing directly behind the aircraft 

is recommended.  

2.12. Switch the flight mode on the RC transmitter to a flyable mode, such as 

STABALIZE.  

2.13. Hold the left control stick (throttle and yaw) in the lower right position. Once tone 

is heard, release yaw control to neutral. Copter is now armed and will fly upon 

advancement of the throttle.  

2.14. To takeoff, SLOWLY advance throttle until the drone comes off the ground.  

2.15. Upon liftoff, back off the throttle a little to reduce climb rate.  

2.16. Proceed to flying! 

3. Manual Flight 

3.1. In manual flight, roll, pitch, yaw, and throttle are all under user control.  

3.2. Any flight adjustment to one axis will affect the aircraft in such a way that another input 

is usually needed. For instance, if pitching forward, more throttle is required to maintain 

the same altitude or the drone will pitch forward and lose altitude.  

3.3. The switch for manual flight was defaulted to be in a position where if the RC 

transmitter is grabbed or bumped, it will push the switch into the manual position.  

4. Preparing for Automated Flight 

4.1. To prepare for automated flight, fly the drone to an area where the drone‟s Lidar sensors 

appear to still be observing the wall. It is suggested to not exceed 35° – 50° of yaw from 

the wall. Remember, the further away the drone is, the more wall required for more 

extreme angles of yaw.  

4.2. Ensure the aircraft is relatively stable before switching to automated flight.  

4.3. Flying less than 8 feet or more than 40 feet from a wall is not recommended for 

automatic flight. Ensure the aircraft is within this tolerance.  

4.4. When ready for automated flight, switch the automated / manual control switch outward 

to allow manual flight.  

5. Automated Flight 

5.1. Once in manual flight, control authority over pitch and roll will not be exhibited by the 

transmitter. The Arduino has full control of these flight axes.  

5.2. Allow the drone to drift a little. It will drift under automated control, especially the 

further away it is. Large amounts of yaw or pitch are a sign of incorrect operation. In this 

case, consider returning back to manual control by pulling the control switch back in to 

manual mode.  
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5.3. Remember that roll and throttle control are still required for safe flight. This means 

observing the aircraft at all times during this flight mode as well. While pitch and yaw 

movement may not necessarily require corresponding throttle or pitch input, consider 

focusing on maintaining these two axis of flight in a controlled, slow, and stable manner.  

5.4. When ready to return to manual mode, pull the control switch back in to manual mode. 

Pitch and yaw control authority will be restored to the RC transmitter.  

6. Landing 

6.1. While landing the drone can be performed in STABALIZE mode, the simplest method is 

suggested to switch to LAND mode.  

6.2. Find a suitable landing area. Hopefully the area of flight is all suitable for landing on.  

6.3. When in position, switch to land mode and maintain directional control.  

6.4. Maintain direction control through touchdown of the aircraft. 

6.5. Reduce the throttle to its minimum position.  

6.6. For advanced fliers, consider landing on a padded area for reduction in shock and 

possible landing damage. 

7. Post Landing and Shutdown 

7.1. Hold the left control stick in the lower left position to disarm the aircraft. A tone can be 

heard when held. Land mode will automatically disarm the aircraft and play the tone.  

7.2. Ensure the aircraft is in LAND mode or disarmed before approaching the aircraft and 

that the throttle position is in the full down position.  

7.3. Press and hold the solid red light button until it starts blinking, this indicates the ESC‟s 

no longer have power routed to them and it is safe to be near the propellers.  

7.4. Switch the SD card switch to OFF and wait 1-2 seconds. It is suggested to repeat this 

again for thoroughness.  

7.5. Switch off the Arduino power.  

7.6. Disconnect the battery  

7.7. Power off the RC transmitter 

8. Emergencies 

8.1. In the event of an unsuitable flight condition, the best options are to switch to manual 

control, and switch to LAND mode. When in doubt, LAND! 

8.2. If manual control disorientation occurs, switch to LAND mode! Even if it results in a 

rough landing, it is better than a failed attempt to save the drone and crash it hard.  

8.3. Ensure that a battery failsafe is in place and that the accelerometers exhibit proper 

calibration prior to liftoff. Never attempt to fly if the accelerometers exhibit poor 

calibration.   
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Arduino Software Code 

MECH_290_master_code_v2.6_FLIGHT_PITCH_AND_YAW.ino 
 

#include <math.h> 

#include <Wire.h> 

#include <LIDARLite.h> 

#include <Adafruit_PWMServoDriver.h> 

 

/* 

 * Ryan Sass 

 * Santa Clara University 

 * rsass@scu.edu or ryan.sass@gmail.com 

 *  

 * Date Published: 5/16/2016 

 * Version Number: 2.6 

 * File: MECH_290_master_code_v2.6_FLIGHT_PITCH_AND_YAW.ino 

 *  

 * Full Control Command Code 

 *  

 * Intended to be run on Arduino MEGA 2560 r3 

 *  

 *  

 ****** I/O PIN ASSIGNMENTS ******  

 *  

 *     ~~~ Input ~~~  

 * A0 - LIDAR Sensor Left 

 * A1 - LIDAR Sensor Right 

 * A4 - Receiver Roll Signal 

 * A5 - Receiver Pitch Signal 

 * A6 - Receiver Yaw Signal 

 * A7 - Receiver Gear Signal 

 *  

 *     ~~~ Output ~~~ 

 *  03 - [PWM] Roll Signaling 

 *  06 - [PWM] Pitch Signaling 

 *  10 - [PWM] Yaw Signaling 

 *  45 - Control Lockout Signal (tied to Gear Signal) 

 *   

 */ 

 

 

//VARIABLES TO BE INITIALIZED 

/* 

roll - roll output pin value 

pitch - pitch output pin value 

yaw - yaw output pin value 

CLS - control lockout signal output pin value  

h_val_10 - value between 0 - 1024 that delineates what is 'HIGH' 

ctrl_enable - CONTROL ENABLE - allows yaw control to occur. It is a signal 

input. 

lidar_l - LIDAR SIGNAL LEFT - Signal input of the left LIDAR unit.  

lidar_r - LIDAR SIGNAL RIGHT - Signal input of the right LIDAR unit.  

lidar_diff - LIDAR DIFFERENCE - subtraction between left and right LIDAR 

units.  
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lidar_yaw_db  - LIDAR YAW DEADBAND - The deadband window for LIDAR difference 

(lidar_diff) that sets to 0.  

yaw_error - YAW ERROR - The difference between LIDAR difference (lidar_diff) 

value and yaw setpoint (yaw_sp).  

yaw_sp - YAW SET POINT - hard coded value of the yaw set point, the 

difference between the two LIDAR units. 

yaw_p - YAW PROPORTIONAL GAIN - the proportioanl gain for the yaw control 

yaw_PWM - YAW PWM SIGNAL - the converted PWM output signal 

 

*/ 

//variable assignments 

bool success1,success2; 

 

//int roll = 3; 

int pitch = 2; 

int yaw = 4; 

int CLS = 45; 

int h_val_10 = 612; 

int lidar_yaw_db_o = 3; 

int yaw_only_db = 40; 

int yaw_sp = 0; 

int32_t pwm_freq = 45; 

int sig_avg = 25; 

int yawpitch = 0; //yaw = 0, pitch = 1 

int yaw_PWM_neutral = 278; 

int lidar_pitch_db = 1; 

int pitch_sp = 670; 

int pitch_PWM_neutral = 278; 

int pitch_trim = 11; 

int pitch_error = 0; 

int pitch_temp = 0; 

int 

ctrl_enable,lidar_l,lidar_r,lidar_diff,yaw_error,yaw_PWM,x,pitch_ave,pitch_PW

M,output1,pitch_error_old,pitch_delta,lidar_yaw_db; 

 

float db_grow; 

float angle,tx,ty,tz; 

float pitch_P = 1.0; 

float yaw_P = 1.0; 

//float pitch_P = 10.5; 

//float yaw_P = 11.5; 

 

 

int sensorPins[] = {2,3}; // Array of pins connected to the sensor Power 

Enable lines 

unsigned char addresses[] = {0x66,0x68}; 

LIDARLite myLidarLite; 

Adafruit_PWMServoDriver pwm1 = Adafruit_PWMServoDriver(); 

 

 

void setup() {    

 

  // initialize serial communication at 9600 bits per second: 

//  Serial.begin(9600); 

   

  //Turn pins on 
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  pinMode(31,OUTPUT); 

  digitalWrite(31,HIGH); 

  //initializing Lidar signals 

  myLidarLite.begin(); 

  myLidarLite.changeAddressMultiPwrEn(2,sensorPins,addresses,false); 

  //start PWM board 

  pwm1.begin(); 

  pwm1.setPWMFreq(48); 

  

  //pinout assignments 

  pinMode(CLS,OUTPUT); 

  ctrl_enable = 1; 

  lidar_yaw_db = lidar_yaw_db_o; 

  pwmneutral(); 

  attachInterrupt(digitalPinToInterrupt(18),stopDataLogging,RISING); 

  pinMode(18, INPUT); 

  initializeDataLogger(); 

} 

 

/*******************************************START OF MAIN 

CODE*********************************************/ 

void loop() {   

    //process LIDAR sensors 

    String s(millis()); 

    s += " "; 

    logData(s); 

    lidarprocess();     

     

    yaw_control();//yaw vs pitch control 

    //Serial.print("Yaw Pitch \t"); 

    //Serial.println(yawpitch); 

    if(yawpitch == 1) pitch_control(); 

     

    //set PWM values to controller 

    pwmset();    

    logData('\n'); 

    

    //print any serial outputs for debugging 

    //printoutput(); 

} 

/*********************************************END OF MAIN 

CODE*********************************************/ 

 

void enab_sig_proc(){ 

  ctrl_enable = analogRead(A7); 

 

  //character gear signal to equivalent boolean 

  if(ctrl_enable >= h_val_10) { 

    //enable signal - enable TRUE 

    ctrl_enable = HIGH; 

  } else { 

    //disable signal - enable FALSE 

    ctrl_enable = LOW; 

  } 

 

  //signal yaw command signal relay to connect 

  digitalWrite(CLS,ctrl_enable); 



 

Page | 63  

 

} 

 

void lidarprocess(){ 

  //LIDAR signal input & averaging 

  x = 0; lidar_r = 0; lidar_l = 0; 

  while(x < sig_avg){ 

    lidar_r += myLidarLite.distance(true,true,0x66);   

    lidar_l += myLidarLite.distance(true,true,0x68); 

    x++; 

    delay(2); 

  } 

  lidar_r /= x; 

  lidar_l /= x; 

  logFloat(lidar_r, " lidar_r: "); 

  logFloat(lidar_l, " lidar_l: "); 

  yawcheck(); 

   

  //LIDAR signaling diferencing 

  pitch_ave = (lidar_l + lidar_r)/2; 

  if(yawpitch != -1){ 

    anglecalc(); 

  } else { 

    angle = 0; 

  } 

    

  db_grow = pitch_sp - pitch_ave; 

  db_grow /= pitch_sp; 

     

} 

 

void yawcheck(){ 

  if((lidar_l > 0) && (lidar_r > 0)){ 

    if((pitch_ave > 1250) || (pitch_ave < 250)){ 

      yawpitch = 0; 

      digitalWrite(31,HIGH); 

    } else { 

      if(abs(angle) <= yaw_only_db) { 

        yawpitch = 1;   

        digitalWrite(31,LOW); 

      } else { 

        yawpitch = 0;  

        digitalWrite(31,HIGH); 

      }       

    }     

  } else { 

    yawpitch = -1;   

    digitalWrite(31,HIGH); 

  }     

} 

 

void yaw_control(){ 

      

  //set point signal conditioning 

  if(lidar_l > lidar_r){ 

    yaw_error = angle - yaw_sp; 

  } else { 

    yaw_error = yaw_sp - angle;     



 

Page | 64  

 

  } 

  if(abs(yaw_error) <= lidar_yaw_db) yaw_error = 0;    

     

  //yaw PWM signal conditioning 

//  yaw_error = (yaw_error > 45 || yaw_error < -45) ? 

(abs(yaw_error)/yaw_error)*45 : yaw_error; 

  if(yaw_error > 45) yaw_error = 45; 

  if(yaw_error < -45) yaw_error = -45; 

  yaw_error /= yaw_P; 

  yaw_PWM = yaw_error + yaw_PWM_neutral;   

  logFloat(yaw_PWM, " yaw_PWM: "); 

  if(yawpitch != 1)  pitch_PWM = pitch_trim + pitch_PWM_neutral; 

} 

 

void pitch_control(){ 

  pitch_error_old = pitch_temp; 

  pitch_error = pitch_sp - pitch_ave; 

  pitch_temp = pitch_error; 

  pitch_error /= 10; 

 

  //signal difference deadbanding     

  if(abs(pitch_error) <= lidar_pitch_db) pitch_error = 0; 

      

  //proportional gain 

  pitch_error *= pitch_P; 

 

  //yaw PWM signal conditioning 

  if(pitch_error > 40) pitch_error = 40; 

  if(pitch_error < -40) pitch_error = -40; 

  pitch_error /= 2.2; 

  pitch_delta = pitch_temp - pitch_error_old; 

  pitch_delta *= (1/3.0); 

  if(pitch_delta > 30) pitch_delta = 30; 

  if(pitch_delta < -30) pitch_delta = -30; 

  if(abs(pitch_delta) < 1) pitch_delta = 0; 

  pitch_PWM = pitch_error + pitch_trim + pitch_delta + pitch_PWM_neutral; 

  if(pitch_PWM > pitch_trim + pitch_PWM_neutral + 15)   pitch_PWM = 

pitch_trim + 15 + pitch_PWM_neutral; 

  if(pitch_PWM < pitch_trim + pitch_PWM_neutral - 20)   pitch_PWM = 

pitch_trim - 20 + pitch_PWM_neutral; 

  logFloat(pitch_PWM, " pitch_PWM: "); 

} 

 

void anglecalc(){ 

   

  if(lidar_l < lidar_r){ 

    tx = pitch_ave - lidar_l; 

  }else{ 

    tx = pitch_ave - lidar_r; 

  } 

   

  angle = lidar_l; 

  tz = lidar_r; 

  ty = (sqrt( (angle * angle) + (tz * tz) - (2 * angle * tz * 0.9848) ) * 0.5 

); 

  angle = ( (ty * ty) - (tx * tx) ); 

  if(angle < 0.05) angle = 0; 
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  tz = sqrt(angle); 

  if((tx == 0) || (ty == 0)){ 

    angle = 0; 

  } else { 

    angle = ( (tx*tx) + (ty*ty) - (tz*tz) ) / (2 * tx * ty); 

  }   

   

  angle = (90 - (180 / 3.14159) * acos(angle)); 

} 

 

void printoutput(){ 

  //printing output to monitor 

  Serial.print("\n\n***** START ****** \n\n\n"); 

  Serial.print("\n Angle \t"); 

  Serial.print(angle); 

  Serial.print("\n Pitch Ave \t"); 

  Serial.println(pitch_ave); 

  Serial.print("\n"); 

  Serial.print("\n LIDAR L \t"); 

  Serial.print(lidar_l); 

  Serial.print("\n LIDAR R \t"); 

  Serial.print(lidar_r); 

  Serial.print("\n"); 

  Serial.print("\n Mode \t"); 

  if(yawpitch == 0){ 

    Serial.print("YAW"); 

  }else{ 

    if(yawpitch == -1){ 

      Serial.print("BAD SIGNAL"); 

    }else{ 

      Serial.print("YAW & PITCH"); 

    } 

  } 

  Serial.print("\n Pitch PWM signal \t"); 

  Serial.print(pitch_PWM); 

  Serial.print("\n Yaw PWM signal \t"); 

  Serial.print(yaw_PWM); 

  Serial.print("\n"); 

  output1 = pitch_PWM; 

  if(output1 == pitch_PWM_neutral + pitch_trim){ 

    Serial.print("\nNEUTRAL "); 

  }else{ 

    if(output1 > pitch_PWM_neutral + pitch_trim){ 

      Serial.print("\nBACKWARD "); 

    } else { 

      Serial.print("\nFORWARD "); 

    } 

  } 

  Serial.print(output1); 

  Serial.print("\n\n***** BREAK****** \n\n\n"); 

  delay(1000); 

} 

 

void pwmset(){ 

  pwm1.setPWM(yaw, 0, yaw_PWM); 

  delay(1); 
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  pwm1.setPWM(pitch, 0, pitch_PWM); 

} 

 

void pwmneutral(){ 

  pwm1.setPWM(0, 0, yaw_PWM_neutral); 

  pwm1.setPWM(1, 0, yaw_PWM_neutral); 

  //pwm1.setPWM(2, 0, yaw_PWM_neutral); 

  pwm1.setPWM(3, 0, yaw_PWM_neutral); 

  //pwm1.setPWM(4, 0, yaw_PWM_neutral); 

  pwm1.setPWM(5, 0, yaw_PWM_neutral); 

  pwm1.setPWM(6, 0, yaw_PWM_neutral); 

  pwm1.setPWM(7, 0, yaw_PWM_neutral); 

  pwm1.setPWM(8, 0, yaw_PWM_neutral);   

 } 

 

 

 

 

LidarDataLogger.ino 
 

#include <SPI.h> 

#include <SD.h> 

 

/* 

 * Ryan Cooper 

 * Santa Clara University 

 *  

 * Date Published: 5/15/2016 

 * Version Number: 2.6 

 * File: LidarDataLogger.ino 

 *  

 * Intended to be run on Arduino MEGA 2560 r3 

  */ 

 

 

// change this to match your SD shield or module; 

// Arduino Ethernet shield: pin 4 

// Adafruit SD shields and modules: pin 10 

// Sparkfun SD shield: pin 8 

const int chipSelect = 53; 

File dataFile; 

 

void initializeDataLogger() { 

//  Serial.print("Initializing SD card..."); 

  if (!SD.begin(chipSelect)) { 

//    Serial.println("Card failed, or not present"); 

    return; 

  } 

//  Serial.println("card initialized."); 

  int i = 0; 

  String file(i); 

  while(SD.exists(file)) { 

    String temp(++i); 

    file = temp; 

  } 

//  Serial.println(file); 
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  dataFile = SD.open(file, FILE_WRITE); 

} 

 

bool logData(String data) { 

  if (dataFile) { 

    dataFile.print(data); 

//    Serial.println(data); 

    return true; 

  } else { 

//    Serial.println("error during data logging"); 

    return false; 

  } 

} 

 

void logFloat(float f, String descriptor) {  

  char c[10]; 

  dtostrf(f, 9, 4, c); 

  String temp(c); 

  descriptor += temp; 

//  Serial.println(descriptor); 

  logData(descriptor); 

} 

 

 

bool logData(char data) { 

  if (dataFile) { 

    dataFile.print(data); 

//    Serial.println(data); 

    return true; 

  } else { 

//    Serial.println("error during data logging"); 

    return false; 

  } 

} 

 

void stopDataLogging() { 

  if (dataFile) { 

//    Serial.println("done logging"); 

    dataFile.close(); 

  } else { 

//    Serial.println("Failed to log data"); 

    return false; 

  } 

} 


